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Abstract

PET is an imaging technique applied in nuclear medicine able to produce images of physiological

processes in 2D or 3D. The use of 18F-FDG PET is now a widely established method to quantify

tumour metabolism, but other investigations based on different tracers are still far from clinical use,

although they offer great opportunities such as radioactive water as a marker of cardiac perfusion.

A major obstacle is the need for dynamic image reconstruction from low quality data, which applies

in particular for tracers with fast decay like H15
2 O.

Here we present a model-based approach to overcome those difficulties. We derive a set of differential

equations able to represent the kinetic behavior of H15
2 O PET tracers during cardiac perfusion.

In this model one takes into account the exchange of materials between artery, tissue and vein

which predicts the tracer activity if the reaction rates, velocities, and diffusion coefficients are

known. We then interpretes, the computation of these distributed parameters as a nonlinear inverse

problem, which we solve using variational regularization approaches. For the minimization we use

the gradient-based methods and Forward-Backward Splitting.

The main advantage of this approach is the reduction of the degrees of freedom, which makes the

problem overdetermined and thus allows to proceed to low quality data. Instead of reconstructing

the 4D tracer activity distribution (in space and time) we identify a set of 3D parameters (spatially

dependent only).

The major contribution of this work in relation to similar studies in the literature is that the

differential equations model proposed here involves not only the portions of exchange of materials,

but also we take into account the contributions due to diffusion and transport portions, making the

proposed model more complex and thus more realistic.
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1
Introduction

Inverse Problems are focus of current research interest in industrial applications (as the identifi-

cation of parameters in industrial processes) [37, 46, 55], applications to geophysics [64, 101],

tomography and medical sciences (detection of tumors and fractures) [12, 74, 81, 82]. They are

systems that, based on observed measurements, allow us to obtain information about a physical

object or system which we are interested in.

Here we will focus on the use of inverse problems involving image reconstruction. The reconstruction

of images has a significant impact in several areas of applied sciences, such as astronomy, microscopic

imaging and especially in medical imaging techniques have a high diagnostic value because they

allow the visualization of anatomical information and physiological effects.

The main objective of this thesis is the reconstruction of kinetic behavior of radioactive water H15
2 O

during cardiac perfusion based on real PET-data. We want also formulate the parameter identifica-

tion problem associated with the inverse problem in question and solve it in order to reconstruct the

kinetic parameters that compose the model of differential equations (which represents the kinetic

behavior of H15
2 O) proposed in this work. The disadvantages arising from the short radioactive

half-life (for H15
2 O ≈ 2 min) are noise and low-resolution reconstructions. We present here the tools

which allow the reconstruction of biological parameters in question.

In the following section, we want to recall the basic motivations and the contributions of this thesis.

Finally, we provide a sketch of how this thesis is organized.
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Figure 1.1: Image of a typical positron emission
tomography (PET). c© Wikipedia

Figure 1.2: Schema of a PET acquisition process.
c© Wikipedia

1.1 Motivation

Positron Emission Tomography is an imaging technique applied in nuclear medicine able to produce

images of physiological process in 2D or 3D. In comparison to other imaging techniques with higher

spatial resolution, the major advantage of the PET procedure is the high sensitivity and ability

for quantitative measurement, making it possible to visualize and to examine specific physiological

effects inside the body.

Besides from being a minimally invasive examination and therefore causing less patient discomfort,

PET allows the development of better diagnostic imaging, detecting and monitoring the activity

of malignant tumors, as well as a better treatment of patients. Many methods to analyze PET

data have been developed based on compartmental models such as cerebral oxygen utilization [78],

neuroreceptor ligand binding [77] and the quantification of blood flow [2, 10, 11, 68, 70].

The procedure is simple and PET will be explained below. Usually glucose connected to a ra-

dioactive element is injected into the patient (normally into the blood circulation). The radioactive

tracer then spreads through the blood circulation and the regions that metabolize the excess of

glucose, such as tumors, are highlighted in the image created by the computer. Figure 1.11 shows

an example for a typical PET-scanner that produces data to process images.

The emission of positrons occurs when the radioactive tracer isotope decays. These positrons are

the antimatter counterparts of electrons. Thus, the electrons annihilate with positrons and produce

a pair of gamma photons that travel into opposite directions. The photons are detected during the

1http://upload.wikimedia.org/wikipedia/commons/b/b8/ECAT-Exact-HR–PET-Scanner.jpg
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PET-scan. Each pair of detectors defines a line along which the intensity of the annihilation is

measured. This intensities along lines can be described via line integrals and the data are stored

by a sinogram before the reconstruction. The process is schematically described in Figure 1.22.

With the given PET sinogram data f(θ, y) the inverse problem of generating an image u(x) from

this data is to compute u from

f = ξ(Ku) (1.1)

where ξ represents the Poisson statistics and K denotes the X-ray transform, defined by

Ku(θ, x) =

∫
R

u(x+ tθ)dt, x+ tθ ⊆ Ω (1.2)

In the 2D case the X-Ray transform is equivalent to the more popular Radon Transform.

The biggest disadvantage of working with inverse problems is that the data f are corrupted by

noise, especially, because the problem is usually ill-posed in the sense of Hadamard [49]. One

problem is called well-posed if it satisfies the conditions of existence, uniqueness and continuous

dependence on data. If any of these requirements is not satisfied, the problem is called ill-posed.

This instability and ill-conditioning must be overcome if we want to solve the inverse problem

satisfactorily. This problem is also transferred to a nonlinear parameter identification problem

which we add regularization methods to each biological parameters (that we want to reconstruct)

independently and to transform the ill-posed problem in a well-posed.

A solution for this inverse problem is given via the minimization below

u ∈ arg min
u∈Ω

{∫
Ω

Ku− flog(Ku)dσ(θ, y) + αR(u)

}

⇒u ∈ arg min
u∈Ω

{∫
Ω

flog

(
f

Ku

)
+Ku− fdσ(θ, y)dσ(θ, y) + αR(u)

} (1.3)

where R is a regularization fuctional (gradient and a-priori regularization) and penalizes the devi-

ation from a ideal (smooth) solution u.

The solution of the minimization problem presented above as well as the calculation of all physi-

ological parameters involved in this process with application in medical science, more specifically

in positron emission tomography, is the biggest motivation of this thesis. Based on the statements

2http://upload.wikimedia.org/wikipedia/commons/c/c1/PET-schema.png
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above we summarize the contribuitions of this work in the following section.

1.2 Contributions

We propose in this thesis a set of differential equations to represent the kinetic behavior of PET-

data during cardiac perfusion. This model is flexible in the sense that one can consider only two

differential equations that take into account only the exchange of materials between artery and

tissue

∂CA
∂t

= −(l0(x)+l1(x))CA(x, t)+l3(x)CT (x, t)+∇·(VA(x)CA(x, t))+∇·(DA(x)∇CA(x, t)) (1.4)

∂CT
∂t

= −(l0(x)+l2(x))CT (x, t)+l1(x)CA(x, t)+∇·(VT (x)CT (x, t))+∇·(DT (x)∇CT (x, t)) (1.5)

Or even with the aid of a third equation, we can represent a more complex system involving artery,

tissue and vein:

∂CA
∂t

= −(k0(x)+k1(x))CA(x, t)+k3(x)CV(x, t)+∇·(VA(x)CA(x, t))+∇·(DA(x)∇CA(x, t)) (1.6)

∂CT
∂t

= −(k0(x)+k2(x))CT (x, t)+k1(x)CA(x, t)+∇·(VT (x)CT (x, t))+∇·(DT (x)∇CT (x, t)) (1.7)

∂CV
∂t

= −(k0(x)+k3(x))CV(x, t)+k2(x)CT (x, t)+∇·(VV(x)CV(x, t))+∇·(DV(x)∇CV(x, t)) (1.8)

Then we consider in this work the elaboration of the parameter identification problem that, by

solving a minimization problem, allows the reconstruction of a sequence of images and dynamic

parameters in positron emission tomography or fluorescence recovery after photobleaching (FRAP)

[23].

As a further contribution in this thesis, we present also the results of the computational simulation

of the equations that describe the model to real PET-data.

1.3 Organization of this Work

The Chapter 2 is designed to provide the mathematical tools needed in the course of this work. We

present here basic concepts of functional analysis and variational calculus, as also the definition of

ill-posed problems.
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In Chapter 3 we discuss the model proposed here, consisting of three differential equations, with

the objective to reconstruct kinetic behavior of radioactive water H15
2 O during cardiac perfusion.

We also present a section devoted specifically to the existence and uniqueness of solution of the

problem.

In Chapter 4 we work on the parameter identification problem associated with the proposed model.

This section involves basic concepts of inverse problems, Expectation Maximization algorithms and

Regularization.

The Chapter 5 consists of a discussion about the identifiability of constant parameters in the system

described by the parabolic differential equations proposed here.

The Chapter 6 is intended for the numerical solution with a brief discussion involving the combina-

tion of EM-algorithm with the parameter identification problem to the resolution of the problem.

We also discuss how the discretization of the differential equations is made and also we discuss

methods used to solve the minimization problem.

Finally, in Chapter 7 we present the computational results with the reconstruction of all parameters

and of the image that represents the physiological process on synthetic and real data in positron

emission tomography.
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2
Mathematical Foundations

This chapter is designed to provide the basic mathematical tools needed in the course of this work.

Section 2.1, 2.2 consist of basic concepts of linear spaces (Banach, Hilbert and Sobolev Spaces) and

their properties. Below we approach some basic concepts about ill-posed problems. Therefore we

present questions involving Variational Calculus and Lebesgue Spaces with concepts widely used in

Chapter 5. Finally the last section is designed to Sobolev Space and their properties.

2.1 Banach Spaces

We present here some definitions involving the Banach and Hilbert Spaces and also dual spaces,

based on [51].

Definition 2.1.1 Let V be a (real or complex) vector space. A norm on V is a real - valued

function, written ||x|| such that

1.) ||x|| > 0 for all x ∈ V and ||x|| = 0 implies x = 0.

2.) ||αx|| = |α|||x|| for all scalar α and vector x.

3.) ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality).

A vector space with a norm is called a normed space.

Definition 2.1.2 A Banach space is a complete, normed linear space.

Definition 2.1.3 If a normed real vector space X is complete, it is called (real) Banach space, i.e,
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if any Cauchy sequence (xn)n∈N has a limit x ∈ X , more specifically if

lim
m,n→∞

||xm − xn||X = 0

holds, then exists a function x ∈ X with limn→∞ ||xn − x||X = 0.

Definition 2.1.4 Let K(X ,Y) be the space of all linear operators M : X → Y that are bounded in

the sense that

||M ||X ,Y := sup
||x||X=1

||Mx||Y <∞ (2.1)

holds. The space K(X ,Y) is a normed space with operator norm || · ||X ,Y .

Theorem 2.1.5 If Y is a Banach space then K(X ,Y) is a Banach space.

2.1.1 Dual Spaces

The dual space of a linear space consists of the scalar-valued linear maps on the space. Duality

methods play a crucial role in many parts of analysis.

Definition 2.1.6 (Dual Space) Let X be a Banach space. The space X ∗ : K(X ,R) bounded of

linear functionals on X is called dual space of X . Due to Theorem 2.1.5 we know that X ∗ is a

Banach space equipped with the operator norm

||p||X∗ := sup
||x||X=1

|p(x)| = sup
x∈X\{0}

|p(x)|
||x||X

= sup
||x||X≤1

|p(x)|; (2.2)

for p(x) defined as the fuctional dual product

〈p, x〉X∗×X := p(x) (2.3)

We are going to write 〈p, x〉X respectively 〈p, x〉X∗ instead of 〈p, x〉X∗×X for simplicity.

Definition 2.1.7 (Dual Operator) Let X and Y be a Banach spaces. For an operator M ∈ K(X ,Y)

the dual or adjoint operator M∗ ∈ K(X ∗,Y∗) is defined via the relation

〈M∗y, x〉X = 〈y,Mx〉Y (2.4)

for all y ∈ Y∗ and x ∈ X . Furthemore, it is easy to see that ||M∗||Y∗,X∗ = ||M ||X ,Y is satified.
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2.2 Hilbert Spaces

Hilbert spaces play a fundamental role in various areas of mathematics. Below we present the

properties to define those:

Definition 2.2.1 (Inner Products) A vector space H is called inner product space if for every x,

y ∈ X there exists a complex number 〈x, y〉, called the inner product of x and y, such that:

a) 〈x, x〉 is real and 〈x, x〉 ≥ 0

b) 〈x, x〉 = 0 if and only if x = 0

c) 〈y, x〉 = 〈x, y〉

d) 〈ax1 + bx2, y〉 = a 〈x1, y〉+ b 〈x2, y〉

Each inner product determines a norm by the formula ||x|| = 〈x, x〉
1
2 and every inner product space

is a normed linear space. The Cauchy-Schwarz inequality states that | 〈x, y〉 | ≤ ||x||||y|| for every

x, y ∈ H. Thus, a Hilbert space is a Banach space equipped with a inner product 〈·, ·〉.

Let H1, L2 be Hilbert spaces. We identify L2 with it is dual L−2. If H−1 denotes the dual of H1

(with norm || ||∗) we have

H1 ↪→ L2 ↪→ H−1 (2.5)

each space being dense in the following ( ↪→ denotes continuous embedding).

2.3 Ill-posed problems

In Chapter 4 we present the whole process necessary for the reconstruction of parameters to the

problem discussed in Chapter 3. There is the use of the concept of inverse problems, which has

many applications in various areas, including imaging sciences.

The greatest obstacle in working with inverse problems is that, the mostly are ill-posed problems.

Below follows the definition of ill-posed problems [48]:

Definition 2.3.1 Let L and M be normed spaces and D : L → M a operator. The problem of

finding a solution f of

D(f) = g
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with g ∈M is called well-posed if

i) there exist a solution for all g ∈M,

ii) the solution is unique,

iii) the solution f depends continuously on g.

The problem is called ill-posed, if it is not well-posed.

Whenever we seek to solve an inverse problem, one has to overcome obstacles such as instability

and ill-posedness. The strategy of regularization is a tool that allows to obtain an approximate

solution.

2.4 Variational Calculus

In this section we present a brief summary of Variational Calculus [36], which is the basis for the

understanding of the resolution of the optimization problem presented in Chapter 4.

Definition 2.4.1 Let P : (X , τ1) → (Y, τ2) be a mapping from a Banach spaces X with topology

τ1 to a Banach space Y with topology τ2. Then P is called an operator. If Y - as a special case of

a Banach space - is a field, P is called a functional.

Definition 2.4.2 A functional P is called proper, with P : X → R∪ {∞}, if the effective domain

dom(P ) := {x ∈ X/P (x) <∞}

is not empty.

Definition 2.4.3 Let P : X → Y be a functional or operator. The directional derivative(also called

first variation) at position x ∈ X in direction y ∈ Y defined as

dyP (x) := lim
t↓0

P (x+ ty)− P (x)

t
(2.6)

if that limit exists.

Definition 2.4.4 Let P : X → Y be a functional or an operator and let dyP (x) exist. The second
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directional derivative (also called second variation) at position x in direction w is defined as

d2
y,wP (x) := lim

t↓0

dyP (x+ tw)− dyP (x)

t
(2.7)

if that limit exists.

Definition 2.4.5 Let P : X → Y be a functional or an operator. The set

dP (x) = {dvP (x) <∞|y ∈ U} (2.8)

is called Gâteaux-derivative. P is called Gâteaux-differentiable, if (2.8) is not empty.

Definition 2.4.6 Let P : X → Y be a functional or operator, X and Y Banach spaces, and suppose

dyP (x) exists for all y ∈ X . If there exists a continuous linear functional P ′(x) : X → Y such that

P ′(x)y = dyP (x) ∀y ∈ X (2.9)

and

||P (x+ y)− P (x)− P ′(x)y||Y
||y||X

−→ 0 for ||y||X −→ 0 (2.10)

holds, then P is called Frechét-differentiable in x and P ′ is called Fréchet-derivative.

Definition 2.4.7 Let U be a Banach space with topology τ . The functional P : (U , τ)→ R∪{+∞}

is called lower semi-continuous at x ∈ U if

P (x) ≤ lim
k→∞

inf P (xk) (2.11)

for all xk → x in the topology τ .

Theorem 2.4.8 (Fundamental Theorem of Optimization) Let P : (U , τ) → R ∪ {+∞} be a func-

tional on a topological space U (locally convex) in the metric topology τ lower semi-continuous.

Furthemore, let the level set

{x ∈ U/P (x) ≤M} (2.12)

be non-empty and compact in the topology τ for some M ∈ R. Then there exists a global minimum

of

P (x)→ min
x∈U

(2.13)
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Proof. Let P̃ = infx∈U P (x). Then a sequence (xk)k∈N exists with P (xk) → P̃ for k → ∞. For

k sufficiently large, P (xk) ≤ M holds and hence, (xk)k∈N is contained in a compact set. As a

consequence, a subsequence (xk)l∈N exists with xk1
→ x̃, for l → ∞, for some x̃ ∈ U . From the

lower semicontinuity of P we obtain

P̃ ≤ P (x̃) ≤ lim
k→∞

inf P (xk) ≤ P̃ . (2.14)

Consequently x̃ is a global minimizer.

Definition 2.4.9 Let X be a Banach space, with X ∗ denoting its dual space. Then the weak

topology is defined as

xk ⇀ x :⇔ 〈y, xk〉X → 〈y, x〉X (2.15)

for all y ∈ X ∗ and the weak-∗topologies are defined as

yk ⇀
∗ y :⇔ 〈yk, x〉X∗ → 〈y, x〉X∗ , (2.16)

for all x ∈ X .

Theorem 2.4.10 (Banach-Alaogu) Let X be a Banach space with dual space X ∗. Then the set

{y ∈ X ∗
∣∣||y||X∗ ≤ C} (2.17)

for C > 0, is compact in the weak-∗topology.

2.5 Lebesgue Measure

In this section we rewiew some of the basic aspects of measure, integration and tools that will be of

major interest throughout this work. First we want to recall the fundamental notion of a σ-algebra

of sets. All definitions and concepts presented here are based on the introduction of [51].

Definition 2.5.1 A σ-algebra of subsets of a set X is, by definition, a collection B of subsets of

X, which satisfies the following requirements:

(a) X ∈ B;

(b) A ∈ B→ Ac ∈ B, where Ac = X −A denotes the complement of the set A; and
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(c) {An}∞n=1 ⊂ B⇒
⋃
nAn ∈ A

A measurable space is a pair (X,B) consisting of a set X and a σ-algebra B of subsets of X.

Thus, a σ-algebra is nothing but a collection of sets which contains the whole space and is closed

under the formation of complements and countable unions.

Definition 2.5.2 If (Xi,Bi), i = 1, 2, are measurable spaces, then a function f : X1 → X2 is said

to be measurable if f−1(A) ∈ B1∀A ∈ B2.

Definition 2.5.3 Let (X,B) be a measurable space. A measure on (X,B) is a function µ : B →

[0,∞] with the following two properties:

(i) The empty set has measure zero, µ(∅) = 0; and

(ii) µ is countable additive - i.e., if E =
∐∞
n=1En is a sequence of pairwise disjoint sets and a

countable “measurable’ partition, meaning that E, En ∈ B∀n, then µ(E) =
∑∞
n=1 µ(En).

A measure space is a triple (X,B, µ), consisting of a measurable space together with a measure

defined on it.

A measure µ is said to be finite if µ(X) <∞ (resp., µ(X) = 1).

Theorem 2.5.4 There exists the σ-algebra Bn of Lebesgue measurable sets on Rn and the Lebesgue-

measure µ : Bn → [0,∞] with properties:

(a) Bn contain all open sets (and also, all closed sets),

(b) µ is a measure on Bn,

(c) if B is any ball in Rn, then we obtain µ(B) = |B|, with |B| denoting the volume of the ball,

(d) if A ⊂ B is valid, with B ∈ Bn and µ(B) = 0, then it follows that A ∈ Bn and µ(A) = 0

hold, which means that (Rn,Bn, µ) is a complete measure space.

The sets A ∈ Bn are Lebesgue measurable.

Definition 2.5.5 (Lebesgue Measurable Function) The function u : Rn → [−∞,∞] is called

Lebesgue measurable if we have

{x ∈ Rn : f(x) > α} ∈ B, (2.18)
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for all α ∈ R. If we furthemore have A ∈ Bn, the function f : A → [−∞,∞] is called Lebesgue

measurable on A if f1
A is Lebesgue measurable, with 1A denothing the indicator function (f1

A = f

on A and f1
A = 0 otherwise).

Lemma 2.5.6 For any sequence (uk) of Lebesgue measurable functions

• supk uk

• infk uk

• lim supk→∞ uk

• lim infk→∞ uk

are also Lebesgue functions. Furthermore, for any Lebesgue measurable function u ≥ 0 there exists

a monotone increasing sequence (uk)k∈N ⊂ E+(Rn) with u = supk uk.

Definition 2.5.7 (Lebesgue Integral) Let (X,µ) be a measure space. The Lebesgue Integral, over

X, of a measurable simple function ϕ : X → [0,∞] is defined as

∫
X

ϕdµ =

∫
X

n∑
k=1

ak
∏

(Ek)dµ =

n∑
k=1

akµ(Ek) (2.19)

we restrict ϕ to be non-negative, to avoid having to deal with ∞−∞ on the righthand side.

Lemma 2.5.8 (Linearity of Integral for Simple Functions) The Lebesgue integral for a simple

function is linear.

Definition 2.5.9 (Integral of non-negative function) Let f : X → [0,∞] be a mesurable and non-

negative. The Lebesgue integral of f over X is given by

∫
X

fdµ = sup


∫
X

ϕdµ/ϕsimple, 0 ≤ ϕ ≤ f

 , (2.20)

and
∫
X

ϕdµ defined in Definition 2.5.7.

Definition 2.5.10 (Lebesgue Spaces Lp) Let (X,B, µ) be a measure space and 1 ≤ p ≤ ∞. The

space Lp(X) consists of equivalence classes of measurable functions f : X → R such that

Lp(Ω) := {f : Ω→ R Lebesgue measurable |||f ||Lp(Ω) <∞}. (2.21)
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The Lp-norm of f ∈ Lp(X) is defined by

||f ||Lp(Ω) =

(∫
|f |pdµ

) 1
p

(2.22)

The notation Lp(X) assumes that the measure µ on X is understood. We say that fn → f in Lp

if ||f − fn||Lp → 0. The reason to regard functions that are equal a.e. as equivalent is so that

||f ||Lp = 0 implies that f = 0.

Definition 2.5.11 Let Lploc(Ω) be the locally Lebesgue integrable functions such that

Lploc(Ω) := {f : Ω→ R Lebesgue measurable |f ∈ Lp(Ψ) for all Ψ ⊂ Ω compact}. (2.23)

2.6 Sobolev Spaces

Taking into account the considerations made above we present here definitions corresponding to

the Sobolev Space.

Definition 2.6.1 (Weak Derivative) Let Ω ⊂ Rn be open and let f ∈ L1
loc(Ω) be locally L1 inte-

grable. If there exists a function w ∈ L1
loc such that

∫
Ω

wϕdx = (−1)|α|
∫
Ω

fDαϕdx (2.24)

holds, for all ϕ ∈ C∞0 (Ω), then w is called the α-th weak partial derivative of f .

To easily identify the weak derivative w of f with f we denote w by Dαf , for the sake of simplicity.

Definition 2.6.2 Let Ω ⊂ Rn be open. For k ∈ N0 and p ∈ [1,∞] the Sobolev space W k,p(Ω) is

defined as

W k,p(Ω) = {f ∈ Lp(Ω)| f has weak derivatives Dαf ∈ Lp(Ω) for all |α| ≤ k} (2.25)

The Sobolev spaces are equipped with the norm

||f ||Wk,p(Ω) :=

∑
|α|≤k

||Dαf ||pLp(Ω)

 1
p

(2.26)

for p ∈ [1,∞[, and

||f ||Wk,∞(Ω) :=
∑
|α|≤k

||Dαf ||L∞(Ω) (2.27)
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3
Compartmental Models

In nuclear medicine and more specifically PET modeling it becomes important to allow quantitative

analysis in the interpretation of experimental data, providing information on measurable and not

measurable quantities [24].

Compartmental models are a classical approach in the estimation of metabolic rates. They are

able to describe fairly well a large number of physiological processes such as brain and heart. In

a PET image-sequence, fixed spatial compartments are areas defined by the concentration of a

radioactive tracer that is a a temporal function. The images obtained by PET are formed by

numerous overlapping signals. So we need to use a mathematical model, which includes all possible

states of that signal given by a sequence of PET-reconstruction, in order to isolate the desired

component. Each of these states is treated as a compartment [105].

As a way of describing the interaction between these compartments one associates one constant

capable to represent the velocity of absorption, diffusion of the radioactive trace used during the

PET scan. Thus data concerning the rate at which radioactive trace is metabolized in the region of

interest can be associated with rates of variation in the time of the radioactive tracer concentrations

in each compartment [24]. The rate of transit of substances between the regions are represented

through a dynamic constant that links these compartments.

Thus it becomes possible to describe the kinetics of a radioactive tracer in a physiological system

making use of a set of differential equations whose solutions are not linear with respect to parameters

of interest. One just has to analyze the variation of the temporal concentration of a radioactive

tracer in a specific compartment and thus determine the quantities of interest.
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The kinetics of radioactive tracers used with positron emission tomography [39, 84] provide exam-

ples, which are modelled by compartmental schemes. The kinetics of [18F ] -fluorodeoxyglucose

(FDG), [13N ] -ammonia and H15
2 O are typical radioactive tracers used to examine regions of in-

terest, being the last two more used to estimate regional myocardial blood perfusion. In [80] a

two-compartmental model and in [67, 66] a three-compartmental model are applied to the analysis

of myocardial PET images.

In the following we want to present the model of parabolic differential equations that describes the

kinetic behavior of H15
2 O PET tracers during cardiac perfusion, the existence and the uniqueness

of the solution of the differential equations problem and the continuity theorem.

3.1 Differential Equations for H15
2 O PET Tracers

Let Ω ⊂ Rd, for d appropriate, bounded, compact space that denotes the compartmental space, i.e.,

an element x ∈ Ω denotes a compartment. Furthermore t ∈ [0, T ) ⊂ R lies within a bounded and

compact set. Since VA, VV , VT , DA, DV , DT and ki, (i = 1, 2, 3) are functions in space, depending

on a compartment x, we have

CA, CV , CT : Dp(CA, CV , CT )× Lp([0, T ]) −→ Lp(Ω× [0, T ])3, with

∂CA
∂t

= −k0(x)CA(x, t)−k1(x)CA(x, t)+k3(x)CV(x, t)+∇ · (VA(x)CA(x, t))︸ ︷︷ ︸
Transport

+∇ · (DA(x)∇CA(x, t))︸ ︷︷ ︸
Diffusion

(3.1)

∂CT
∂t

= −k0(x)CT (x, t)+k1(x)CA(x, t)−k2(x)CT (x, t)+∇·(VT (x)CT (x, t))+∇·(DT (x)∇CT (x, t))

(3.2)

∂CV
∂t

= −k0(x)CV(x, t)−k3(x)CV(x, t)+k2(x)CT (x, t)+∇·(VV(x)CV(x, t))+∇·(DV(x)∇CV(x, t))

(3.3)

and

Dp := {ki ∈ L2(Ω), VA/V/T ∈ L∞(Ω), DA/V/T ∈ L∞(Ω), k > 0, D > 0} (3.4)
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subject to the boundary conditions

(D∇CA/T /V + V CA/T /V) · n = jin Γ ⊂ ∂Ω jin = const · V

(D∇CA/T /V + V CA/T /V) · n = CA/T /VVout ∂Ω/Γ

(3.5)

The blood in an artery, transporting a radioactive tracer is described via a function CA(x, t).

Similarly, the blood containing the radioactive tracer in a tissue and in a vein are described by

CT (x, t) and CV(x, t) respectively and const is a constant.

This model differs from others currently found in the literature because here we also consider

the contributions due to diffusion and transport. For these contributions, DA, DT , DV are the

parameters of diffusion and VA, VT , VV are the velocity parameters in the arteries, tissue and veins

respectively. All these parameters are only functions of spatial coordinates, independent of time.

The terms k0(x)CA(x, t), k0(x)CT (x, t) and k0(x)CV(x, t) represent the radioactive decay of the

compound. And finally the rates k1, k2 and k3 represents the exchange of fluids between the artery,

tissue and vein.

The parameters DA, DV , DT , ki and CA, CV , CT are non negative, CA, CV , CT due as a density,

k1, k2 and k3 because of physiology and DA, DV , DT because they are diffusion parameters.

3.1.1 Preliminary Considerations

In order to prove the uniqueness of the solution of the problem mentioned above, let D(A) be a

subspace of H1. Thus we have
∂CA
∂t
∂CV
∂t
∂CT
∂t

 = −A

 CA

CV

CT

 in (H−1)3 (3.6)

where

A =

 +(k0 + k1)−∇(VA(·))−∇(DA∇(·)) −k3 0

0 +(k0 + k3)−∇(VV (·))−∇(DV∇(·)) −k2

−k1 0 +(k0 + k2)−∇(VT (·))−∇(DT∇(·))



Definition 3.1.1 Let a, b ∈ R = R ∪ {−∞,+∞}. We denote by W (a, b;H1, H−1) the space

W (a, b;H1, H−1) = {u ∈ L2(0, T ;H1)3 ∩H1(0, T ;H−1)3} (3.7)

The problem is then to find u = (CA(x, t), CT (x, t), CV(x, t)), with

u(t) ∈W (a, b;H1, H−1) (3.8)
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and

∂tu = −Au, (3.9)

u(0) = u0 (3.10)

A satisfies:

< Au, v > ≤ c1||u||(H1)3 · ||v||(H1)3 , (3.11)

which is easily verified by Cauchy-Schwarz, and

< Au, u > ≥ c2||u||2(H1)3 − c3||u||2(L2)3 (3.12)

It follows that, for each t ∈ [0, T ], the bilinear form a(t;u, v) = Au defines a continuous operator A

from H1 → H−1 with

sup
t∈(0,T )

||A||L(H1,H−1) ≤M (3.13)

Definition 3.1.2 Let {H1
m}m∈N∗ be a family of finite dimensional vector spaces satisfying:{
i)H1

m ⊂ H1 (dim H1
m < +∞)

ii)H1
m → H1when m→∞ in the following sense:

(3.14)

there exists V a dense subspace of H1, such that, for all v ∈ V, we can find a sequence {vm}m∈N∗
such that, for all m, vm ∈ H1

m and vm → v in H1 as m→∞. The space H1
m is called the Galerkin

approximation or order m (m 6= dim H1
m) of H1.

3.1.2 Uniqueness of the Solution of Problem

The proof of uniqueness and the existence of the solution of problem are mainly based on the work

of Dautray [32].

Theorem 3.1.3 (Uniqueness) Suppose that Au satisfies (3.11) and (3.12), u0 ∈ L2. Then the

solution of problem (3.9), if it exists, is unique.

Proof. We consider u1 and u2 to be two distinct solutions of problem (3.9), then u = u1 − u2

satisfies u ∈W (a, b;H1, H−1) and
∂tu−∇ · (V u+D∇u) +Ku = 0

(D∇u+ V u) · n = jin Γ ⊂ ∂Ω

(D∇u+ V u) · n = uvout ∂Ω/Γ

(3.15)

with

K =

 (k0 + k1) −k3 0

0 (k0 + k3) −k2

−k1 0 (k0 + k2)


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Then by multiplying by the directional derivative and integrating:∫
Ω

∂tuϕ dσ −
∫
Ω

∇ · (V u+D∇u)ϕ dσ +

∫
Ω

Kuϕ dσ = 0

∫
Ω

∂tuϕ dσ −

− ∫
Ω

(V u+D∇u)∇ϕ dσ +

∫
∂Ω

(V u+D∇u) · nϕ dσ

+

∫
Ω

Kuϕ dσ = 0

∫
Ω

∂tuϕ dσ +

∫
Ω

(V u+D∇u)∇ϕ dσ −

∫
Γ

jinϕ dσ +

∫
∂Ω/Γ

uvoutϕ dσ

+

∫
Ω

Kuϕ dσ = 0

(3.16)

Let

−Θ(u, ϕ) =

∫
Ω

D∇u∇ϕ dσ +

∫
Ω

V u · ∇ϕ dσ +

∫
Ω

Kuϕ dσ −
∫

∂Ω/Γ

uvoutϕ dσ (3.17)

Thus

1

2

d

dt
|u(t)|2 −Θ(u, ϕ) =

∫
Γ

jinϕ dσ (3.18)

For uniqueness, it satisfies to consider jin = 0

(ϕ, v) =

∫
Γ

jinϕ dσ = 0 (3.19)

and by Gronwall’s Lemma and ϕ = u we have

1

2

d

dt
|u(t)|2 = Θ(u, ϕ)

≤ c3|u|2(L2)3 − c2|u|2(H1)3 ≤ c3|u|2(L2)3

(3.20)

And we have uniqueness in problem (3.9).

3.1.3 Existence of a Solution of Problem

Theorem 3.1.4 Under the hypothesis of Theorem (3.1.3), there exists a solution of problem (3.9)

and

u ∈W (0, T ;H1, H−1)

Approximate Problem

Let {H1
m}m∈N∗ be a family of finite dimensional vector subspaces satisfiying (3.14), H1 being dense

in L2, for u0 ∈ L2, there exists a sequence {u0m}m∈N∗ such that

∀m,u0m ∈ (H1
m)3 and u0m → u0 in (L2)3 (3.21)

Let be

dm = dim H1
m, {Wjm} j = 1, ..., dm a basis of H1

m (3.22)
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Thus, our problem is to find

um(t) =

dm∑
j=1

gjm(t)Wjm (3.23)

satisfying 

T∫
0

∫
Ω

∂tum(t)Wjmdσdt−
T∫

0

∫
Ω

∇ · (V um(t) +D∇um(t))Wjmdσdt

+

T∫
0

∫
Ω

Kum(t)Wjmdσdt = 0 1 ≤ j ≤ dm

um(0) = u0m

(3.24)

Lemma 3.1.5 There exists a unique solution um to problem (3.24) satisfying:

um ∈ L2(0, T ;H1)3 ∩H1(0, T ;H−1
m )3 (3.25)

A priori estimates

We multiply equation (3.24) by gjm(t) and we sum from 1 to dm; it becomes

1

2

d

dt

T∫
0

∫
Ω

|um(t)|2dσdt−
T∫

0

∫
Ω

∇ · (V um(t) +D∇um(t))um(t)dσdt

+

T∫
0

∫
Ω

Kum(t)um(t)dσdt = 0

(3.26)

and, by integration over ]0, T [:

T∫
0

∫
Ω

∂tum(t)um(t)dσdt+

T∫
0

∫
Ω

(V um(t) +D∇um(t))∇um(t)dσdt

−

 T∫
0

∫
Γ

jinum(t)dσdt+

T∫
0

∫
∂Ω/Γ

um(t)voutum(t)dσdt

+

T∫
0

∫
Ω

Kum(t)um(t)dσdt = 0

(3.27)

by (3.12), we have

1

2
|um(t)|2 −Θ(um, um) = +

 T∫
0

∫
Γ

jinum(t)dσdt

+
1

2
|u0m|2 (3.28)

1

2
|um(t)|2 = Θ(um, um) +

1

2
|u0m|2

≤ −c2||um||2(H1)3 + c3||um||2(L2)3 + C|u0|2
(3.29)

with t ∈ [0, T ], C a suitable constant, independent of t,m. From which we have

Lemma 3.1.6 The functions um solutions of our problem (3.9) belong to a bounded set of L∞(L2)3

and of L2(H1)3.
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Passage to the limit for m→∞

From Lemma (3.1.6) and from (3.13), we can deduce that

A(·)um ∈ a bounded set of L2(H−1)3 (3.30)

By using the properties of weak (or weak star) compactness of unit balls of the spaces

L2(H1), L∞(L2), L2(H−1) we deduce

Lemma 3.1.7 We can extract from the sequence {um}m∈N∗a subsequence {u′m} having the follow-

ing properties:


i) um′ → u weakly in L2(H1)3

ii) um′ → u weakly * in L∞(L2)3

iii) A(·)um → A(·)u weakly in L2(H−1)3

Let then ϕ ∈ D(]0, T [) and v ∈ V.

From (3.14)(ii), there exists {vm}m∈N∗ , vm ∈ H1
m, such that vm → v strongly in H1. Therefore,

let be {
ψm = ϕ⊗ vm i.e ψm(t) = ϕ(t)vm

ψ = ϕ⊗ v
(3.31)

and, particularly,

 i) ψm → ψ in L2(0, T ;H1)3, strongly, m
′ →∞

ii) ψm′ →
dψm′

dt
→ ψ′ in L2(0, T ;L2)3 strongly, m′ → +∞

(3.32)

From (3.24), we have



T∫
0

∫
Ω

∂tum′(t)ψ
′
m′(t)dσdt+

T∫
0

∫
Ω

(V um′(t) +D∇um′(t))∇ψm′(t)dσdt

−

 T∫
0

∫
Γ

jinψm′(t)dσdt+

T∫
0

∫
∂Ω/Γ

um′(t)voutψm′(t)dσdt

+

T∫
0

∫
Ω

Kum′(t)ψm′(t)dσdt = 0

ψm = ϕ⊗ vm, ∀ϕ ∈ D(]0, T [)

(3.33)

from (ii) of Lemma (3.1.7) and (3.32) (i)

T∫
0

∫
Ω

∂tum′(t)ψ
′
m′(t)dσdt =

T∫
0

∫
Ω

∂tu(t)ψ′(t)dσdt as m′ →∞ (3.34)
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And, from (iii) of Lemma (3.1.7) and (3.32)(i)

+

T∫
0

∫
Ω

∇ · (V um′(t) +D∇um′(t))ψm′(t)dσdt

−

 T∫
0

∫
Γ

jinψm′(t)dσdt+

T∫
0

∫
Ω

um′(t)voutψm′(t)dσdt

+

T∫
0

∫
Ω

Kum′(t)ψm′(t)dσdt

=

T∫
0

∫
Γ

−Aum′(t), ψm′dt

→ +

T∫
0

∫
Ω

∇ · (V u(t) +D∇u(t))ψ(t)dσdt

−

 T∫
0

∫
Γ

jinψ(t)dσdt+

T∫
0

∫
Ω

u(t)voutψ(t)dσdt

+

T∫
0

∫
Ω

Ku(t)ψ(t)dσdt

as m′ →∞

(3.35)

Thus we can pass to the limit in (3.33) and then we have

T∫
0

∫
Ω

(u(t), v)ϕ′(t)dσdt+

T∫
0

∫
Ω

∇ · (V (u(t), v) +D∇(u(t), v))ϕ(t)dσdt

−

 T∫
0

∫
Γ

jin(u(t), v)ϕ(t)dσdt+

T∫
0

∫
∂Ω/Γ

(u(t), v)voutϕ(t)dσdt


+

T∫
0

∫
Ω

K(u(t), v)ϕ(t)dσdt = 0 ∀v ∈ V and ∀ϕ ∈ D(]0, T [).

(3.36)

Since V is dense in H1, (3.36) remains true for all v ∈ H1 if we shown that u satisfies (3.9).

u is the solution of (3.9)

First we have to show that u is the solution of problem (3.9), it remains to show that (3.8) and

(3.10) are satisfied. For equation (3.8): Considering the equation (3.36), we have

T∫
0

∫
Ω

(u(t), v)ϕ′(t)dσdt = −
T∫

0

∫
Ω

∇ · (V (u(t), v) +D∇(u(t), v))ϕ(t)dσdt

+

 T∫
0

∫
Γ

jin(u(t), v)ϕ(t)dσdt+

T∫
0

∫
∂Ω/Γ

(u(t), v)voutϕ(t)dσdt


−

T∫
0

∫
Ω

K(u(t), v)ϕ(t)dσdt

=

T∫
0

∫
Ω

−A(u(t), v)ϕ(t)dσdt

(3.37)



3 Compartmental Models 29

Since A(·)u(·) ∈ L2(0, T ;H−1)3 ∩H1(0, T ;H−1)3,
g = A(·)u ∈ L2(0, T ;H−1) ∩H1(0, T ;H−1)3

T∫
0

∫
Ω

(u(t), v)ϕ′(t)dσdt =

T∫
0

∫
Ω

(g(t), v)ϕ(t)dσdt ∀v ∈ H1, ∀ϕ ∈ D(]0, T [)
(3.38)

and, as seen in [32],

u′ =
du

dt
∈ L2(0, T ;H−1)3 ∩H1(0, T ;H−1)3 (3.39)

and u(t) ∈W (H1) is a continuous function from [0, T ]→ L2.

For equation (3.10): Let ϕ be a function of class C∞ over [0,T], zero in a neighbourhood of T , with

ϕ(0) 6= 0, with values in R.

Then ψ = ϕ⊗ v, v ∈ H1 is in W (H1) and by parts formula:

T∫
0

∫
Ω

(u′(t), ϕ(t)v)dσdt = −
T∫

0

∫
Ω

(u(t), v)ϕ′(t)dσdt− (u(0), v)ϕ(0) (3.40)

From (3.9) and (3.39) we have

T∫
0

∫
Ω

(u′(t), ϕ(t)v)dσdt = −
T∫

0

∫
Ω

∇ · (V (u(t), v) +D∇(u(t), v))ϕ(t)dσdt

+

 T∫
0

∫
Γ

jin(u(t), v)ϕdσdt+

T∫
0

∫
∂Ω/Γ

(u(t), v)voutϕdσdt


−

T∫
0

∫
Ω

K(u(t), v)ϕ(t)dσdt

(3.41)

And from (3.24), we deduce

T∫
0

∫
Ω

(u′m′(t), vm′)ϕ(t)dσdt = −
T∫

0

∫
Ω

∇ · (V (um′(t), vm′) +D∇(um′(t), vm′))ϕ(t)dσdt

+

 T∫
0

∫
Γ

jin(um′(t), vm′)ϕ(t)dσdt+

T∫
0

∫
∂Ω/Γ

(um′(t), vm′)voutϕ(t)dσdt


−

T∫
0

∫
Ω

K(um′(t), vm′)ϕ(t)dσdt

(3.42)

and also

T∫
0

∫
Ω

(u′m′(t), vm′)ϕ(t)dσdt =

T∫
0

∫
Ω

(um′(t), vm′)ϕ
′(t)dσdt− (u0m′ , vm′)ϕ(0) (3.43)
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If we pass to the limit in (3.42) and (3.43) as m′ →∞ we obtain

lim
m′→∞

T∫
0

∫
Ω

(u′m′(t), vm′)ϕ(t)dσdt = −
T∫

0

∫
Ω

∇ · (V (u(t), v) +D∇(u(t), v))ϕ(t)dσdt

+

 T∫
0

∫
Γ

jin(u(t), v)ϕ(t)dσdt+

T∫
0

∫
∂Ω/Γ

(u(t), v)voutϕ(t)dσdt


−

T∫
0

∫
Ω

K(u(t), v)ϕ(t)dσdt

=

T∫
0

∫
Ω

(u′(t), ϕ(t)v)dσdt

(3.44)

lim
m′→∞

T∫
0

∫
Ω

(u′m′(t), vm′)ϕ(t)dσdt = −
T∫

0

∫
Ω

(u(t), v)ϕ′(t)dσdt− (u0, v)ϕ(0) (3.45)

From (3.40), (3.45) and (3.44):

(u(0), v) = (u0, v) ∀v ∈ H1 (3.46)

and H1 being dense in L2, ∀v ∈ L2, we have

u(0) = u0 (3.47)

Thus

Lemma 3.1.8 The function u is the solution of problem (3.9).

Now we need to write in the vector form of (3.24) in the approximate problem relative to the space

L2(0, T ;H−1)3.

Let H−1
m be the set of u ∈ H−1 such that (u, v) = 0 for all v ∈ H1

m and PH
−1

m the projection in H−1

over H1
m, following H−1

m : if {w̃j,m}j=1 to dm is an orthonormal basis in L2 of H1
m, PH

−1

m is given by:

PH
−1

m (u) =

dm∑
j=1

(u, w̃j,m)w̃j,m

Then (3.24) ist in the form:

dum
dt

+ PH
−1

m A(·)um(·) = 0 (3.48)

Let be the Galerkin approximation such that: (C) the family (PH
−1

m )m∈N is bounded in L(H−1).

If the Galerkin approximation is constructed starting from a ortonormal basis in H of elements in

H1, then this condition above is always satisfied and (C) implies that such a basis is also a basis

in H1 and in H−1. And the equation (3.30) implies:
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PH
−1

m A(·)um ∈ a bounded set of L2(H−1)3 (3.49)

And we deduce from (3.48) that the family
dum
dt

is in a bounded set of L2(H−1)3

Lemma 3.1.9 The solution um of (3.48) remains in a bounded set of L∞(L2)3 and W (0, T ;H1, H−1).

We can extract a weakly convergent (to u) subsequence in W (H1) from the preceding sequence

(and in L∞ weakly *), as a consequence of the weak compactness of the unit ball of W (H1).

From Theorem (3.1.3), the mapping u ∈ W (H1) → u(0) ∈ (L2)3 is continuous, we can to deduce

that um(0) tend towards u(0) weakly in (L2)3, therefore that the initial condition u(0) = u0 is

satisfied.

Strong Convergence

One does not need here to extract a subsequence of um, because due to uniqueness of the solution

we have

um → u in L2(H1)3 weakly and um →∗ u in L∞(L2)3 weakly * (3.50)

We now introduce

Xm(T ) =
1

2
|um(T )− u(T )|2 +

T∫
0

∫
Ω

∇ · (V (um(t)− u(t)) +D∇(um(t)− u(t)))(um(t)− u(t))dσdt

−

 T∫
0

∫
Γ

jin(um(t)− u(t))(um(t)− u(t))dσdt+

T∫
0

∫
∂Ω/Γ

(um(t)− u(t))vout(um(t)− u(t))dσdt


+

T∫
0

∫
Ω

K(um(t)− u(t))(um(t)− u(t))dσdt

(3.51)

From (3.29), um(T ) remains bounded in (L2)3 and we can extract {um′} in Lemma (3.1.7) with

um′(T )→ X1 weakly in (L2)3 (3.52)

If we take ϕ ∈ D([0, T ]) null in a neighbourhood of 0, with ϕ(T ) 6= 0 and doing the same way as in

u(0) = u0, we obtain

(u(T ), v) = (X1, v), ∀v ∈ (H1)3

from which we deduce

u(T ) = X1 (3.53)

Taking (3.50), we have

um(T )→ u(T ) weakly in (L2)3 (3.54)
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This set, Xm(T ) can be written:

Xm(T ) =
1

2
|um(T )|2 +

T∫
0

∫
Ω

∇ · (V um(t) +D∇um(t))um(t)dσdt

−

 T∫
0

∫
Γ

jinum(t)um(t)dσdt+

T∫
0

∫
∂Ω/Γ

um(t)voutum(t)dσdt


+

T∫
0

∫
Ω

Kum(t)um(t)dσdt+ Ym(T )

Thanks to Lemma (3.1.7) and to (3.54), we have

lim
n→∞

Ym(T ) = −1

2
|u(T )|2 −

T∫
0

∫
Ω

∇ · (V u(t) +D∇u(t))u(t)dσdt

+

 T∫
0

∫
Γ

jinu(t)u(t)dσdt+

T∫
0

∫
∂Ω/Γ

u(t)voutu(t)dσdt


−

T∫
0

∫
Ω

Ku(t)u(t)dσdt

(3.55)

From (3.26), we deduce by integration from 0 to T:

1

2
|um(T )|2 +

T∫
0

∫
Ω

∇ · (V um(t) +D∇um(t))um(t)dσdt

−

 T∫
0

∫
Γ

jinum(t)um(t)dσdt+

T∫
0

∫
∂Ω/Γ

um(t)voutum(t)dσdt


+

T∫
0

∫
Ω

Kum(t)um(t)dσdt =
1

2
|u0m|2

from which

lim
m→∞

1

2
|um(T )|2 +

T∫
0

∫
Ω

∇ · (V um(t) +D∇um(t))um(t)dσdt

−

 T∫
0

∫
Γ

jinum(t)um(t)dσdt+

T∫
0

∫
∂Ω/Γ

um(t)voutum(t)dσdt


+

T∫
0

∫
Ω

Kum(t)um(t)dσdt =
1

2
|u0|2

(3.56)
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But from equation (3.9)

1

2
|u0|2 =

1

2
|u(T )|2 +

T∫
0

∫
Ω

∇ · (V u(t) +D∇u(t))u(t)dσdt

−

 T∫
0

∫
Γ

jinu(t)u(t)dσdt+

T∫
0

∫
∂Ω/Γ

u(t)voutu(t)dσdt


+

T∫
0

∫
Ω

Ku(t)u(t)dσdt

(3.57)

Thus (3.55), (3.56) and (3.57) imply

lim
m→∞

Xm(T ) = 0 (3.58)

Since from (3.12), we have

0 ≤ α
T∫

0

∫
Ω

||um(t)− u(t)||2dσdt ≤ Xm(T ) (3.59)

we deduce from (3.58) and (3.59).

Proposition 3.1.10 When m→∞, we have um → u strongly in L2(H1)3.

The equation (3.58) implies that um(T )→ u(T ) strongly in (L2)3. More generally

∀t ∈ [0, T ], um(t)→ u(t) strongly in (L2)3. (3.60)

For this, it is sufficient to remark that for t0 ∈]0, T [ fixed, L2(0, t0;H1)3 identifies with a subspace

of L2(H1)3. Then all v ∈ L2(H1)3 define, by restriction to ]0, t0[, an element of L2(0, t0, H
1)3 and

(3.60) results from:

Xm(t0) =
1

2
|um(t0)− u(t0)|2

+

T∫
0

∫
Ω

∇ · (V (um(σ)− u(σ)) +D∇(um(σ)− u(σ))(um(σ)− u(σ))dσdt

−

 T∫
0

∫
Γ

jin(um(σ)− u(σ))(um(σ)− u(σ))dσdt

+

T∫
0

∫
∂Ω/Γ

(um(σ)− u(σ))vout(um(σ)− u(σ))dσdt


+

T∫
0

∫
Ω

K(um(σ)− u(σ))(um(σ)− u(σ))dσdt

(3.61)
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3.1.4 Continuity Theorem

Considering the variational formulation of the problem, the uniqueness of the solution and the

existence of the solution previously presented, we want to enunciate the following theorem in order

to evaluate the continuity of the solution with respect to the data.

Suppose that the equation (3.12) holds.

Theorem 3.1.11 Let u0 and u∗0 ∈ L2(0, T ;H−1)3∩H1(0, T ;H−1)3 and let u and u∗ be the corres-

ponding solutions of problem (3.9), then

||u− u∗||L∞(L2) ≤ c3|u0 − u∗0| (3.62)

||u− u∗||L2(H1) ≤
1
√
c2
|u0 − u∗0| (3.63)

Proof. Set w = u− u∗, w(0) = u0 − u∗0. Then w satisfies

w ∈W (0, T ;H1, H−1)

T∫
0

∫
Ω

∂t(w(t), v)dσdt =

T∫
0

∫
Ω

∇ · (V w(t) +D∇w(t))vdσdt−
T∫

0

∫
Ω

(Kw(t))vdσdt ∈ D(]0, T [)

w(0) = u0 − u∗0
(3.64)

and we have

1

2
|w(t)|2 −

t∫
0

∫
Ω

∇ · (V w(σ) +D∇w(σ))w(σ)dσdt+

t∫
0

∫
Ω

(Kw(σ))w(σ)dσdt =
1

2
|w(0)|2 (3.65)

As for the a priori estimates, we obtain:

1

2
|w(t)|2 ≤ −c2||w||2(H1)3 + c3||w||2(L2)3 +

1

2
|w(0)|2 (3.66)

and we have (3.62) and (3.63).



4
Parameter Identification Problem

Parameter identification problems are often used in research in applied sciences. For example, the

identification of parameters in mathematical models is the key to describe biological systems. Some

works take into account a special type of a non-linear function estimator, called sigmoidal networks

for estimation of the parameters of compartmental models for neural network analysis [43, 99]. An

adjoint method for performing automatic parameter identification on differential equation based

models with application to protein regulatory networks can be find in [86].

The identification of parameters in tracer kinetic models has also increasing importance in medical

areas. Our emphasis in this work is into one of the most important applications in clinical and

research PET: myocardial perfusion imaging. The radioactive tracer measured with PET can be

put in relation with the physiological process by identifying a model describing the kinetics of the

tracer in the system [84]. The tracers most commonly used to examine the myocardial region

in examinations PET are 13N -ammonia [26, 41, 98] and H15
2 O [2, 10, 53, 62, 68]. A general

literature on parameter identification can be found in [5, 54, 55, 30, 38].

Even after the parameters are identified, it is important to make an analysis of the results, since

there are several factors that can influence their quality. As sources of uncertainty we can find

the low sensitivity of parameters and measured values, the model adopted to represent the object

of study (since the parameters are valid only for the model adopted) and the imprecision of the

measured values, either read errors or imprecision of the instrument used.

It is therefore required an evaluation of the model by synthesizing data, which by Ljung [72],

depends on the following aspects:

• degree of agreement between the values of experimentally obtained data and the values ob-

tained with the utilization of the model in question;

• usefulness of the intended purpose of the model in real cases;

• capacity of the model in describing the real system.

The second point above is the interesting from a practical viewpoint. The usefulness of the proposed

model is verified if, using a particular model, the estimated physiological parameters help the

medical diagnose a satisfactory manner. The evaluation of the parameters estimated for the problem

addressed here is done in Chapter 7.
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In this chapter we present the parameter identification problem associated with the model proposed

here but first we will make a short introduction involving the definition of inverse problems.

4.1 Inverse Problems

Inverse problems constitute a very interesting class of problems involving knowledge in various areas

of mathematics and has many applications in many other sciences, including the reconstruction of

images using PET.

For our case, in particular, given PET-sinogram data the inverse problem of generating an image

u(x) from this data is to compute u from

ξ(Ku) = f (4.1)

where ξ represents Poisson statistics of the data and K denotes the Radon Transform, defined by

(Ku)(θ, s) =

∫
x·θ

u(x)dx. (4.2)

The maximum likelihood estimate is given by

u ∈ arg min
u∈Ω

{∫
Ω

Ku−flog(Ku)dσ(θ, y)

}
⇒ u ∈ arg min

u∈Ω

{∫
Ω

flog

(
f

Ku

)
+Ku−fdσ(θ, y)dσ(θ, y)

}
(4.3)

Thus calculating the partial Fréchet-derivative of the associated Lagrange functional and setting

then to zero, yields the optimality condition

K∗1−K∗
(

f

Ku

)
= 0, (4.4)

where 1 denotes the constant function taking only the value one and K∗ is the adjoint operator of

K. Therefore the solution to the above equation can be obtained by the EM-algorithm presented

in the next section.

uk+1 =
uk
K∗1

K∗
(

f

Kuk

)
. (4.5)

But instead of solving an inverse problem and calculating the parameters directly to u, we will

compute the parameters as an inverse problem involving the inversion of a non-linear operator G

(which produces a sequence of images u(x, t)) for physiological parameters p as follows with more

explanations in the next section.

Thus, we want to reconstruct the image u subject to u(x, t) = G(p(x)) such that

u(x, t) = CT (x, t) + CV(x, t) + CA(x, t) (4.6)

where the vector p contain all non-negative parameters

p = (k1(x), k2(x), k3(x), DT (x), DA(x), DV(x), VT (x), VA(x), VV(x)) (4.7)
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4.2 Variational Model

Let G correspond to the conditions cited above. The variational problem for the calculation of

the parameters can be written as an optimization problem with appropriate added regularization

(R(p)) as follows

IM(u) +R(p)→ min
p

subject to u(x, t) = G(p) (4.8)

with IM representing the image reconstruction process.

Considering the EM-functional (presented in the next Section) and writing the problem as time-

dependent data, we have

T∫
0

∫
Ω

(Ku− flog(Ku)) +R(p)→ min
p
, subject to u = G(p). (4.9)

Making the calculation of the partial Fréchet-derivatives of the associate Lagrange functional and

setting them to zero [6], we obtain

0 =
∂

∂u
L(u, p; q) = K∗1−K∗

(
f

Ku

)
− q (4.10)

0 =
∂

∂p
L(u, p; q) = R′(p) +G′(p)∗q (4.11)

0 =
∂

∂q
L(u, p; q) = G(p)− u (4.12)

with G(p) being positive. Multiplying the first equation with u, we have

0 = us− uK∗
(

f

Ku

)
− uq (4.13)

G′(p)∗q = −R′(p) (4.14)

with u = G(p) and s := K∗1.

As seen in [90] we can write the minimization problem (with a convex function) as follows

min
u,p
{I = KL(f,Ku) +R(p)|G(p) = u}

= min
p∈Ω
{KL(f, F (p)) +R(p)}

(4.15)

where KL(f,Ku) denotes the Kullback-Leibler (KL) functional defined below.

Definition 4.2.1 (Kullback-Leibler Functional) The Kullback-Leibler functional is a function KL :

L2(Ω)× L2(Ω)→ R≥0

⋃
{+∞} with Ω ⊂ Rm bounded and measurable, given by

KL(ϕ,ψ) =

∫
Ω

(
ϕ log

(
ϕ

ψ

)
− ϕ+ ψ

)
ϑ ∀ ϕ,ψ ≥ 0a.e. (4.16)

where ϑ is a measure. Note that, using the convention 0 log 0 = 0. the integrand in (4.16) is
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nonnegative and vanishes if only if ϕ = ψ.

Lemma 4.2.2 (Properties of KL Functional) Let K satisfy Assumption (4.2.5) (i) and (ii). Then

the following statements hold:

(i) The function (ϕ,ψ) 7−→ KL(ϕ,ψ) is convex and thus, due to the linearity of the operator K,

the function (ϕ, u) 7−→ KL(ϕ,Ku) is also convex.

(ii) For any fixed nonnegative ϕ ∈ L2(Ω), the function u 7−→ KL(ϕ,Ku) is lower semicontinuous

with respect to the topology τL2 .

(iii) For any nonnegative functions ϕ and ψ in L2(Ω), one has

||ϕ− ψ||2L2(Ω) ≤
(

2

3
||ϕ||L2(Ω) +

4

3
||ψ||L2(Ω)

)
KL(ϕ,ψ) (4.17)

Proof. (i) See [90], Lemma 3.4.

(ii) For the proof we consider [90], Lemma 3.4 (iii). Let be the a nonnegative function (ϕ ∈
L2(Ω)) and consider un converging in the topology τL2 to some u ∈ {w ∈ L2 : w ≥ a.e.}; being

un a sequence in the domain of the function w 7−→ KL(ϕ,Kw). As the operator K is sequentially

continuous with respect to the topologies τL2 and τV we have the convergence of the sequence (Kun)

to Ku in the norm topology L2(Ω). Thus, the sequence
(
ϕ log

( ϕ

Kun

)
−ϕ+Kun

)
converges almost

everywhere to ϕ log
( ϕ

Ku

)
− ϕ+Ku and we obtain by Fatou’s Lemma

∫
Ω

(
ϕ log

( ϕ

Ku

)
− ϕ+Ku

)
dσ ≤ lim inf

n→∞

∫
Ω

(
ϕ log

( ϕ

Kun

)
− ϕ+Kun

)
dσ (4.18)

And (4.18) means that the function w 7−→ KL(ϕ,Kw) is lower semicontinuous with respect to the

topology τL2 .

(iii) See [90], Lemma 3.3 and [13], Lemma 2.2.

Corollary 4.2.3 If {ϕn} and {ψn} are bounded sequences in L2(Ω), then

lim
n→∞

KL(ϕn, ψn) = 0⇒ lim
n→∞

||ϕn − ψn||L2(Ω) = 0 (4.19)

Proof. The statements follows directly from Lemma 4.2.2 - (iii)

We make now some considerations involving the functional K and the regularization functional R.

Assumption 4.2.4 We assume here that the regularization functional R(p) : Dp → R≥0 ∪ {∞} is

convex on a Banach space Dp ⊂ L2(Ω)n.

For the next considerations, it is necessary the assumptions below

Assumption 4.2.5 We assume also that

(i) The operator K : L2(Ω)→ L2(Ω) is linear and bounded,
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(ii) The operator K preserves positivity, (Ku ≥ 0) a.e. for any u ≥ 0 a.e. and the equality is

fulfilled if and only if u = 0.

(iii) If u ∈ L2(Ω) satisfies c1 ≤ u ≤ c2 a.e. for some positive constants c1,c2 > 0 then there exist

c3, c4 > 0 such that c3 < Ku < c4 a.e. on Ω.

(iv) The functional G(p) : (Dp, τ)→ L2 is continuous and G(p) > 0.

(v) The functional KL(f,KG(p)) is lower semicontinuous with the topologie τ .

(vi) For every a > 0, the sub-level sets SR(a) of the functional R(p), defined by

SR(a) := {p ∈⊂ Dp : R ≤ a} (4.20)

are sequentially precompact in metric topology τ .

(viii) The functional R : Dp −→ R≥0 ∪ {+∞} is convex, lower semicontinuous with respect to the

topology τ (see Definition 4.2.6 below) and can also be singular, i.e. it is not differentiable in

the classical sense.

(iv) We consider Dp compact embedded in (L∞)3 × (L∞)d×3 × (L2)3.

Definition 4.2.6 (Lower Semicontinuous Functional) Let U be a linear locally convex space and

I : U → R ∪ {+∞} a functional (not necessarily convex). Then I is lower semicontinuous, if it

satisfies the following equivalent conditions:

(i) The sub-level sets

{p ∈ U : I(p) ≤ a} (4.21)

are closed for every a ∈ R.

(ii) For any u ∈ U and for every converging sequence (pn) with limit u it holds

I(p) ≤ lim inf
n→∞

I(pn) (4.22)

4.3 Existence of a Minimum

Theorem 4.3.1 Let K, R and I satisfy Assumption (4.2.5). Moreover assume that α > 0, f ∈
Vµ(Ω) is nonnegative and that the operator K satisfies K1 6= 0, where 1 denotes the characteristic

function on Ω. Then, the functional I defined in (4.15) has a minimizer.

Proof. To prove the above theorem, we use the method of calculus of variations proposed in [4].

Let D(I) 6= ∅, i.e., there exists at least one v ∈ L2(Ω) such that I(v) < ∞. Thus, consider

(pn) ⊂ D(I), pn ≥ 0 a.e., be a minimizing sequence of the functional I, i.e.

lim
n→∞

I(pn) = inf
p∈D(I)

I(p) =: Imin <∞ (4.23)
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Thus, for all ε > 0 there exists n0 ∈ N such that for all n ≥ n0

a := Imin + ε ≥ I(pn)
4.15
= KL(f,KG(pn)) + αR(pn)

≥ R(pn)
(4.24)

due to the positivity of the KL functional and α > 0. Thus (pn)n≥n0 ⊂ SR(a) and it follows from

Assumption 4.2.5 - (v) that (pn) has a τL2 -convergent subsequence (pnj ), which converges to some

p̃ ∈ L2(Ω). As R is lower semicontinuous with respect to topology τL2 , we have

R(p̃)
Definition 4.2.6

≤ lim inf
j→∞

R(pnj )
4.24

≤ a (4.25)

and with it that p̃ ∈ SR(a). Simultaneously, caused by Lemma 4.2.2, the functional I in (4.15) is

lower semicontinuous with respect to the topology τL2 and implies

I(p̃)
Definition 4.2.6

≤ lim inf
j→∞

I(pnj )
4.23
= Imin (4.26)

which means that p̃ is a minimizer of I.

4.4 Properties of G(p)

Theorem 4.4.1 Let (k1, k2, k3, VA, VT , VV , DA, DT , DV) ∈ Dp(G(p)); G(p) being defined as in

(4.9) and the vector p containing all nonnegative parameters (4.7). Then, u = G(p) is non-negative.

Proof. By the equation (4.9) we have

G(p) = u(x, t) = CA(x, t) + CT (x, t) + CV(x, t) (4.27)

Then we need to show that the radioactive concentration in artery, tissue and vein are nonnegative.

First consider CA(x, t) as in the equation (3.1). We can write

L(p)CA(x, t) = DA∆CA(x, t) + VA∇CA(x, t) + (k0 + k1)CA(x, t) = f(x), x ∈ Ω (4.28)

This type of differential equations satisfy the so-called maximum principle implying that the max-

imum/ minimum of a function in a domain is to be found on the boundary of that domain [40].

Consider the following proposition:

Proposition 4.4.2 (Strong Maximum Principle) Let CA(x, t) and L(p) as in the equation (4.28)

with LCA > 0. Then CA ≥ 0 or CA has no local minimum in the interior of Ω on t > 0.

In addition, we want apply the maximum principle for the case LCA ≥ 0.

Proposition 4.4.3 (Weak Maximum Principle) Let CA(x, t) and L(p) as in the equation (4.28)

with LCA ≥ 0. Then if CA has the global minimum, it is on at t = 0.

Proof. Let CA such that the global minimum at an interior point x ∈ Ω and CA(x) > 0. Consider
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then the function CεA = CA + εt and CV = 0. Then holds

∂tC
ε
A = ∂tCA + ε

∂tC
ε
A = DA∆CA + VA∇CA − (k0 + k1)CA + ε

First consider the case CεA ≥ 0 in (x, t) and assume the minimum of CA in CA = 0, we have then

∂tC
ε
A = 0, (k0 + k1)CA = 0, ∇CA = 0 and DA∆CA ≥ 0, which implies

−ε+ ∂tC
ε
A = DA∆CA + VA∇CA − (k0 + k1)CA

0 > −ε = DA∆CA ≥ 0

And as CεA ≥ 0, we have

CεA = CA + εt ≥ 0 =⇒ CA ≥ −εt ∀ε

And thus CA ≥ 0 when ε→ 0 (considering α sufficiently small) which is a contradiction to a Strong

Maximum Principle. In the same way, the proof holds for CT and CV , considering the functions

CεT = CT + εt and CεV = CV + εt. For more examples see [40].

We know then that in t = 0, CεA(x, 0) > 0, CεT (x, 0) > 0 and CεV(x, 0) > 0. Consider then the case

where Cεi (x, t) < 0 and exists CAi(x, t) so that the minimum is found when CεA(x, t) = 0 for t ≤ t

without loss of generality and

CεA(x, t) ≥ 0 CεT (x, t) ≥ 0 CεV(x, t) ≥ 0

and, therefore

−ε ∂CA
∂t︸ ︷︷ ︸
=0

= DA∆CA︸ ︷︷ ︸
≥0

+VA∇CA︸ ︷︷ ︸
=0

+ (k0 + k1)CA︸ ︷︷ ︸
=0

+ k3︸︷︷︸
≥0

CV︸︷︷︸
≥0

=⇒ 0 = −ε ≥ 0

and the same is true for the equations (3.2) and (3.3).

Theorem 4.4.4 (Continuity) Let (k1, k2, k3, VA, VT , VV , DA, DT , DV) ∈ Dp(G(p)) and let α ∈ R+

be positive. Then u = G(p), G : Dp →W (0, T ;H1, H−1) is continuous.

Proof. To prove the continuity, let u = G(p) =


∂CA
∂t
∂CV
∂t
∂CT
∂t

 and let for this case ∂tu = L(p)u,

according to the equation (3.6).

Consider u1 =


∂CA1

∂t
∂CV1

∂t
∂CT1
∂t

 and u2 =


∂CA2

∂t
∂CV2

∂t
∂CT2
∂t

 associated respectively to the vectors of parame-

ters p1 and p2. Writing

∂tui = L(pi)ui (4.29)

Applying above the difference ũ = u1 − u2, we have

∂t(u1 − u2) = L(p1)u1 − L(p2)u2

= L(p1)(u1 − u2) + (L(p1)− L(p2))u2

(4.30)
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=⇒ ∂tũ− L(p1)ũ = f

= (L(p1)− L(p2))u2

(4.31)

Finally the continuity in u can be shown by a Lipschitz-argument:

=⇒ ||ũ||W (0,T ;H1,H−1) ≤ c||f ||L2(0,T ;H−1)

≤ c̃||L(p1)− L(p2)||L2(0,T ;H−1)

(4.32)

Then since L is linear, we have

||(L(p1)− L(p2))v||L2(0,T ;H−1) ≤ c||p1 − p2||Dp ||v||W (0,T ;H1,H−1) (4.33)

Lemma 4.4.5 Let L(p) satisfy the conditions above then

||L(p)v||L2(0,T ;H−1) ≤ c||p||Dp ||v||L2(0,T ;H1) (4.34)

Proof. First we consider only the portion that represent the diffusion. Calculating the norm for

this portion, we have:

||∇ · (ϕ∇v)||L2(0,T ;H−1) ≤ c||ϕ∇v||L2 (4.35)

And considering ϕ(x) ∈ Dp, we can calculate

T∫
0

∫
Ω

ϕ2|∇v|2dxdt ≤ ||ϕ||2∞

∣∣∣∣∣∣
∣∣∣∣∣∣
T∫

0

∫
Ω

|∇v|2dxdt

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ||ϕ||∞||∇v||L2

≤ ||ϕ||∞||v||L2(0,T ;H1)

(4.36)

Analyzing now only the portion that represents the transport we have

||∇ · (ϕv)||L2(0,T ;H−1) ≤ c||ϕv||L2

≤ c||ϕv||L2(0,T ;Lq)

(4.37)

with q < 2 optimal so that

Lq ↪→ H−1.

Considering the regularization functional cited previously, remembering that Ω ⊂ Rd, the following

embedding of H1 holds by [95] Lemma 4:

H1 ↪→ LΥ

for 2 ≤ Υ


≤ ∞, if d = 1,

<∞, if d = 2,

<
2d

d− 2
, if d = 3

(4.38)

and thus, employing the Hölder’s inequality

||ϕv||L2(0,T ;Lq) ≤ ||ϕ||L2(0,T ;Lq)||v||L2(0,T ;LΥ) (4.39)
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And finally, considering the portion that represents the exchange of materials and using again the

Hölder’s inequality we have

||ϕv||L2(0,T ;H−1) ≤ c̃||ϕ||L2 (4.40)

Theorem 4.4.6 Under the condition of Theorem 4.4.4, the operator G(p) for G(p) defined as in

the equation (4.9) is Fréchet-differentiable.

Proof. Let ∂tu = L(p)u, u = G(p) and consider v = G′(p)ϕ being the derivative in the direction

ϕ. Therefore

∂

∂t
(G′(p)ϕ) = ∂tv = L(p)(G′(p)ϕ) + (L′(p)ϕ)G(p)

= L(p)v +K(ϕ)G(p)︸ ︷︷ ︸
f

(4.41)

=⇒ ∂v

∂t
= L(p)v + f (4.42)

Where

G′(p)ϕ = lim
ε→0

G(p+ εϕ)−G(p)

ε

εG′(p)ϕ ≈ G(p+ εϕ)−G(p)

Thus,

||G(p+ εϕ)−G(p)− εG′(p)ϕ|| = θ(ε)

=⇒ ||Gε −G− εv|| = θ(ε) =⇒
ε→0

0
(4.43)

and hence, the equation (2.10) is satisfied for all ϕ ∈ L∞.

Consider now that
∂Gε

∂t
= L(p + εϕ)Gε, Gε = G(p + εϕ),

∂G

∂t
= L(p)G(p),

∂v

∂t
= L(p) + f and

w = Gε −G− εv, then

∂(Gε −G− εv)

∂t
=
∂w

∂t
= L(p+ εϕ)G(p+ εϕ)− L(p)G(p)− ε(L(p) + f)

= Lε (Gε −G− εv)︸ ︷︷ ︸
w

+Lε(G+ εv)− L(G+ εv)− εf︸ ︷︷ ︸
g

(4.44)

and thus,

∂w

∂t
= L(p)w + g

=⇒ ||w||W (0,T ;H1,H−1) ≤ c||g||L2(0,T ;H−1)

(4.45)

Since Lε = L(p+ εϕ), L is linear i.e. L(p1) + L(p2) = L(p1 + p2) and L′(p)ϕ = L(ϕ), we have

g = Lε(G+ εv)− L(G+ εv)− εf

= L(p+ εϕ)(G+ εv)− L(p)(G+ εv)− εL(ϕ)G

= (L(p+ εv)− L(p)− εL(ϕ))︸ ︷︷ ︸
=0(ε→0)

G+ (L(p+ εϕ)− L(ϕ))︸ ︷︷ ︸
εL(ϕ)

εv

= ε2L(ϕ)v.

(4.46)
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And we have to verify

||L(ϕ)v|| ≤ c||ϕ||2 (4.47)

where the physiological parameters DA/T /V ∈ (L∞)3, VA/T /V ∈ (L∞)d×3 and ki ∈ (L2)3, for

i = 1, 2, 3.

First we consider only the portion that represent the diffusion. Calculating the norm for this

portion, we have:

||∇ · (ϕ∇v)||L2(0,T ;H−1) ≤ c||ϕ∇v||L2 (4.48)

And considering ϕ(x) ∈ Dp, we can calculate

T∫
0

∫
Ω

ϕ2|∇v|2dxdt ≤ ||ϕ||2∞

∣∣∣∣∣∣
∣∣∣∣∣∣
T∫

0

∫
Ω

|∇v|2dxdt

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ||ϕ||∞ ||∇v||L2︸ ︷︷ ︸
≤||v||L2(0,T ;H1)

(4.49)

As we know that
∂v

∂t
= L(p)v + L(ϕ)G(p) and it implies

||v||W (0,T ;H1,H−1) ≤ c||f ||L2(0,T ;H1), (4.50)

calculating ||f || we have

||f ||W (0,T ;H1,H−1) = ||∇ · (ϕ∇G(p))||

≤ ||ϕ||∞ · ||G(p)||L2(0,T ;H1)

≤ c̃||ϕ||∞ · ||G(p)||L2(0,T ;H1)

(4.51)

And thus,

||∇(ϕ∇v)||W (0,T ;H1,H−1) ≤ c||ϕ∇v||L2

≤ ||ϕ||∞||v||L2

≤ ||ϕ||∞ (c||f ||L2)

≤ ||ϕ||∞c̃||ϕ||∞||G(p)||L2(0,T ;H1)

≤ c̃||ϕ||2∞||G(p)||L2

(4.52)

Analyzing now only the portion that represents the transport we have

||∇ · (ϕv)||L2(0,T ;H−1) ≤ c||ϕv||L2

≤ c||ϕv||L2(0,T ;Lq)

(4.53)

with q < 2 optimal so that

Lq ↪→ H−1.

Considering the regularization functional cited previously, remembering that Ω ⊂ Rd, the following

embedding of H1 holds by [95] Lemma 4:

H1 ↪→ LΥ
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for 2 ≤ Υ


≤ ∞, if d = 1,

<∞, if d = 2,

<
2d

d− 2
, if d = 3

(4.54)

and thus, employing the Hölder’s inequality

||ϕv||L2(0,T ;Lq) ≤ ||ϕ||L2(0,T ;Lq)||v||L2(0,T ;LΥ) (4.55)

and, as seen previously, we need to calculate ||f ||:

||f ||L2(0,T ;H−1) = c||(ϕ∇G(p))||L2(0,T ;H1)

≤ ||ϕ||L2(0,T ;Lq) · ||G(p)||L2(0,T ;H1)

(4.56)

that implies

||(ϕ∇v)||L2(0,T ;H−1) ≤ c||ϕ∇v||L2(0,T ;H−1)

≤ c||ϕ||L2(0,T ;Lq)||v||L2(0,T ;H1)

≤
(4.42)

c||ϕ||2Lq ||G(p)||L2(0,T ;H1)

(4.57)

for appropriated Υ and q. And finally, considering the portion that represents the exchange of

materials and using again the Hölder’s inequality we have

||ϕv||L2(0,T ;H−1) ≤ c̃||ϕ||L2 (4.58)

Thus, with all the considerations made above, we have that G(p) is Fréchet-differentiable.

4.5 Stability of the regularized Poisson estimation problem

The stability results guarantee that the regularized approximations converge to a solution p, if the

approximated data converge to a smooth function f .

Theorem 4.5.1 Let K, R, I and Vµ(Ω) satisfy Assumption 4.2.5. Let also α > 0 be fixed and

assume that the functions fn ∈ Vµ(Ω), n ∈ N, are nonnegative approximations of a data function

f ∈ Vµ(Ω) such that

lim
n→∞

KL(fn, f) = 0 (4.59)

Also let

pn ∈ arg min
p∈L2(Ω)
p≥0a.e.

{In(p) := KL(fn, F (p)) +R(p)}, n ∈ N (4.60)

with F (p) = KG(p) and p a solution of the regularized problem (4.15) corresponding to the data

function f . Additionally, we assume that log f and log(KG(p)) belong to the function space L∞µ (Ω)

and there exists positive constants c1, ..., c4 such that

0 < c1 ≤ f ≤ c2 and 0 < c3 ≤ KG(p) ≤ c4 a.e. on Ω (4.61)

We supose now that the sequence (fn) is uniformly bounded in the Vµ-norm, i.e, there exists a
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positive constant c5 such that

||fn||Vµ ≤ c5, ∀ n in N (4.62)

Then the problem (4.15) is stable with respect to the perturbations in the data, i.e, the sequence

(pn) has a τ -convergent subsequence and every τ -convergent subsequence converges to a minimizer

of the functional I in (4.15).

Proof. We will use the pre-compactness property of the sublevel sets SR from Assumption 4.2.5

- (vi) for the existence of a τ -convergent subsequence of (pn). We have to show also the uniform

boundedness of the sequence (R(pn)). Consider α > 0 a fixed regularization parameter. For any

n ∈ N, the positivity of the KL functional and the definition of pn as a minimizer of the objective

functional In in (4.60) implies that

R(pn) ≤ KL(fn, F (pn)) +R(pn)︸ ︷︷ ︸
In(pn)

≤ KL(fn, F (p)) +R(p)︸ ︷︷ ︸
In(p)

(4.63)

Hence, the sequence R(pn) is bounded if the sequence KL(fn, F (p)) on the right-hand side of

(4.63) is bounded. To show this, we use the condition (4.62) and obtain the uniform boundedness

of sequence (fn) in the L2(Ω)-norm, due to continuous embedding of Vµ in Assumption 4.2.5 - (vii).

Therefore, condition (4.59) and the result in Corollary 4.2.3 yield the strong convergence of (fn)

to f in L2(Ω), i.e, we have

lim
n→∞

||f − fn||L2(Ω) = 0 (4.64)

Thus the condition (4.61) implies together with the inequality

|KL(fn, F (p))−KL(f, F (p))−KL(fn, f)| =

∣∣∣∣∣∣
∫
Ω

(logKF (p)− log f)(f − fn)dµ

∣∣∣∣∣∣
≤ || logKF (p)− log f ||L∞(Ω)︸ ︷︷ ︸

<∞

||f − fn||L2
Ω︸ ︷︷ ︸

(4.64)−→ 0

the following convergence:

lim
n→∞

KL(fn,KF (p)) = KL(f,KF (p)) (4.65)

The expressions KL(f, F (p)) and R(p) are bounded because p is a minimizer of the regularized

problem (4.15) corresponding to the data function f and thus also the sequence (KL(fn, F (p))) is

bounded, since convergent to KL(f, F (p)). This means, together with the boundedness of R(p)

and the property (4.63), the uniform boundedness of the sequence (R(pn)).

The uniform boundedness of the sequence (R(pn)) means that exists a ∈ R≥0 such that (R(pn))

is contained in the sub-level set SR(a). Thus, the precompactness Assumption 4.2.5 - (vi) ensures

the existence of a τ -convergent subsequence (pnj ), which converges to some p̃ ∈ Dp. Actually p̃ lies

in SR(a), since R is lower semi-continuous with respect to the topology τ and therefore SR(a) is

τ -closed. (see Definition 4.2.6).

Consider now an arbitrary subsequence (pnj ) of (pn), which converges to some p̃ ∈ Dp with re-

spect to the topology τ . Due to the sequential continuity of the operator K we have also the

convergence of (KF (pnj )) to KF (p̃) in the strong norm topology on L2(Ω), as well as the pointwise
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convergence almost everywhere on Ω. Similarly, it holds also for the sequence (fn), which converges

strongly to f in L2(Ω) (4.64). Thus, since the functions fn and pn are nonnegative for all n ∈ N
and K is an operator that preserves positivity (see Assumption 4.2.5 - (ii)), we can apply Fatou’s

Lemma to the sequence (fnj log(fnj/KF (pnj ))− fnj +KF (pnj )) and we have

KL(f,KF (p̃)) ≤ lim inf
j→∞

KL(fnj ,KF (pnj )) (4.66)

Due the lower semicontinuity of the regularization energy R (see Assumption 4.2.5 - (viii)) and

due to (4.63), (4.65) and (4.66), we obtain the inequality

KL(f,KF (p̃)) +R(p̃)
4.66
≤ lim inf

j→∞
KL(fnj ,KF (pnj )) + lim inf

j→∞
R(pnj )

≤ lim inf
j→∞

(
KL(fnj ,KF (pnj )) +R(pnj )

)
≤ lim sup

j→∞

(
KL(fnj ,KF (pnj ) +R(pnj )

)
4.63
≤ lim sup

j→∞

(
KL(fnj ,KF (p)) +R(p)

)
4.65
= KL(f,KF (p)) +R(p)

(4.67)

which means that p̃ is a minimizer of the functional I in (4.15).

4.6 EM Algorithm

We present in this section the Expectation Maximization algorithm [34, 82, 97], which was created

by Dempster, Laird and Rubin (1977) and is commonly used to solve maximun likehood estimation

problems. Such problems appear in several areas e.g. astronomy, microscopy and medical imaging.

We work here with a formulation based on inverse problems with measured data from Poisson

statistics associated with the problem (4.9).

Computing the first order optimality condition for (4.9), we have

0 = K ∗ 1−K∗
(

f

Ku

)
− λ

0 = λu

(4.68)

where λ represents the Lagrange multiplier (λ ≥ 0) for the Karush-Kuhn-Tucker (KKT) conditions

[52], K∗ is the adjoint operator of K and 1 is the constant function taking only the value one.

If we multiply the equation (4.68) by u we obtain the iterative scheme

uk+1 =
uk
K∗1

K∗
(

f

Kuk

)
(4.69)

just eliminating the second equation in (4.68) and preserving the positivity of K.

We now consider two cases, the case of noisy data and noise-free data. In the case of noisy data,

we must take in consideration if the operator K is discrete or continuous. If K is a matrix and u



4 Parameter Identification Problem 48

a vector (discrete case) it is guaranteed the existence of the minimizer since the smallest singular

value is bounded away from zero by a positive value [93]. If it is continuous, we can prove the

convergence but even a divergence of the EM-algorithm is possible due to underlying ill-posedness

of the image reconstruction problems.

Already in the case of noise-free data the convergence proofs of the EM-algorithm can be found in

[56, 82, 91, 102], even though the speed of convergence of iteration (4.69) is slow.

4.7 Forward-Backward Splitting

The splitting methods are based on the simple idea of dividing the original problem into two sub-

problems that, when solved iteratively, provide a solution to the original problem [7]. A major

advantage of using splitting methods is the effort required to solve a simple problem. Here we

present a splitting method called Forward-Backward Splitting that in comparison to the Gradient

method, gives a significant gain of time in search of minimizers parameters for our optimization

problem. Forward-Backward Splitting methods are versatile in offering ways of exploiting the

special structure of variational inequality problems [28].

We apply the method to the minimization problem following

u ∈ arg min
u∈Ω
{K(u) = L(u) +M(u)} (4.70)

where for our case L(u) denotes the Kullback-Leibler functional and M(u) represents the regulari-

zation functional R(p). Thus, we can solve the problem with the aid of a variable stepsize:

uk+ 1
2
∈ {uk − τk∂uL(uk)}

uk+1 ∈ {uk+ 1
2
− τk∂uM(uk+1)}

(4.71)

for τ a positive stepsize sequence.

The first-half step can be realized via the well-known EM iteration to reconstruct the image u by

uk+ 1
2

=
uk
K∗1

K∗
(

f

Kuk

)
(4.72)

Thus, uk+ 1
2

is obtained with the above equation and (4.13) can be rewritten as

q =
uk − uk+ 1

2

uk
(4.73)

Equation (4.73) can be treated as a solution of the minimization problem

1

2

T∫
0

∫
Ω

(
u− uk+ 1

2

)2

uk
dxdt− 〈u, q〉L2(Ω) → min

u
, (4.74)
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And, if we change u by G(p) we obtain

1

2

T∫
0

∫
Ω

(
G(p)− uk+ 1

2

)2

uk
dxdt− 〈G(p), q〉L2(Ω) → min

p
, (4.75)

The Fréchet-derivative of 〈G(p), q〉 in p is simply G′(p)∗q. Using (4.14) we can replace −〈G(p), q〉
by R(p) to obtain the reduced problem

1

2

T∫
0

∫
Ω

(
G(p)− uk+ 1

2

)2

uk
dxdt+R(p)→ min

p
, (4.76)

The second half-step is a parameter identification problem, formulated as the constrained optimiza-

tion problem with added regularization, given by the equation (4.76).

Finally the first-order optimality condition for (4.76) is given by

0 = G′(p)∗

(
G(p)− uk+ 1

2

uk

)
+R′(p), (4.77)

We can not solve the above equation directly, since the parameter p contains several functions that

have to be computed each on their own. This problem will be treated as a problem of identification

of parameters, discussed in Section 4.8.

4.8 Parameter Identification Problem

The purpose of this section is the development of the parameter identification problem to allow

the calculation of all the biological parameters that composes the vector p. Unfortunately we can

not directly solve the equation (4.77) for p, since p contains several functions and G′(p)∗ is also

difficult to calculate because it is a vector of functions itself. Thus, minimizing the function below

(with the regularization added)) we can find the values that correspond to the desired physiological

parameters

1

2

T∫
0

∫
Ω

(
u− uk+ 1

2

)2

uk
dxdt+R(p) +

T∫
0

∫
Ω

(G(p)− u) q dxdt→ min
p

, (4.78)

with G(p) = G(p(x, t)) = u(x, t), for all (x, t) ∈ Ω× [0, T ]. With the associated Lagrange functional

one has

L(u, p; q) =
1

2

T∫
0

∫
Ω

(u− uk+ 1
2
)2

uk
dxdt+R(p) +

T∫
0

∫
Ω

(G(p)− u) q dxdt (4.79)
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And with all constrains to CA, CV and CT we obtain the follows Lagrange functional:

L(u(x, T ), CA(x, t), CT (x, t), CV(x, t), DT (x), DA(x), DV(x), VT (x), VA(x),

VV(x), k1(x), k2(x), k3(x); q(x, t), µ(x, t), η(x, t), γ(x, t))

=
1

2

T∫
0

∫
Ω

(u− uk+ 1
2
)2

uk
dxdt+R1(DA(x)) +R2(DV(x)) +R3(DT (x)) +R4(VA(x))

+R5(VV(x)) +R6(VT (x)) +R7(k1(x)) +R8(k2(x)) +R9(k3(x))

+

T∫
0

∫
Ω

(G(CA(x, t), CT (x, t), CV(x, t), DT (x), DA(x), DV(x), VT (x), VA(x), VV(x))− u) q(x, t)dxdt

+

T∫
0

∫
T

(
∂CT
∂t

(x, t)−∇(VT (x)CT (x, t))−∇ · (DT (x)∇CT (x, t))

−k1(x)CA(x, t) + (k0 + k2)(x)CT (x, t))µ(x, t)dxdt

+

T∫
0

∫
A

(
∂CA
∂t

(x, t)−∇(VA(x)CA(x, t))−∇ · (DA(x)∇CA(x, t))

−k3(x)CV(x, t) + (k0 + k1)(x)CA(x, t)) η(x, t)dxdt

+

T∫
0

∫
V

(
∂CV
∂t

(x, t)−∇(VV(x)CV(x, t))−∇ · (DV(x)∇CV(x, t))

−k2(x)CT (x, t) + (k0 + k3)(x)CV(x, t)) γ(x, t)dxdt

(4.80)

One must now calculate the optimality conditions to the problem, which means that all the partial

Fréchet-derivatives must be zero. Thus, considering the previous equation (4.80) we obtain

∂L
∂u

=
u(x, t)− uk+ 1

2
(x, t)

uk(x, t)
− q(x, t) = 0 (4.81)

To calculate the derivative in relation to DA(x), let be J(DA(x)) the equation formed only by the

terms of L (4.80) containing DA(x)

J(DA(x)) =

T∫
0

∫
A

DA(x)∇CA(x, t) · ∇η(x, t) dxdt+R1(DA(x))

Take the directional derivative in direction ϕ(x)

J(DA(x) + τϕ(x)) =

T∫
0

∫
A

(DA(x) + τϕ(x))∇CA(x, t) · ∇η(x, t) dxdt

+R1(DA(x) + τϕ(x))
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Thus

d

dτ
J(DA(x) + τϕ(x)) =

T∫
0

∫
A

ϕ(x)∇CA(x, t) · ∇η(x, t) dxdt+R′1(DA(x))ϕ(x)

=

∫
A

ϕ(x)

 T∫
0

∇CA(x, t)∇η(x, t) dt

 dx
=

〈
ϕ(x),

T∫
0

∇CA(x, t)∇η(x, t) dt

〉

And the derivative in relation to DA(x) is

∂L
∂DA

=

T∫
0

∇CA(x) · ∇η(x, t) dt+R′1(DA(x)) (4.82)

Then, we obtain additional optimality conditions for DV(x) and DT (x)

∂L
∂DV

=

T∫
0

∇CV(x) · ∇γ(x, t) dt+R′2(DV(x)) (4.83)

∂L
∂DT

=

T∫
0

∇CT (x) · ∇µ(x, t) dt+R′3(DT (x)) (4.84)

For VA(x), VV(x) and VT (x) one proceeds at the same way. Let the directional derivative in

direction ϕ(x)

J(VA(x) + τϕ(x)) =

T∫
0

∫
A

(VA(x) + τϕ(x))CA(x, t) · ∇η(x, t) dxdt+R4(VA(x) + τϕ(x))

Thus

d

dτ
J(VA(x) + τϕ(x)) =

T∫
0

∫
A

ϕ(x)CA(x, t) · ∇η(x, t) dxdt+R′4(VA(x))ϕ(x)

=

∫
A

ϕ(x)

 T∫
0

CA(x, t)∇η(x, t) dt

 dx
=

〈
ϕ(x),

T∫
0

CA(x, t)∇η(x, t) dt

〉

Thus,

∂L
∂VA

=

T∫
0

VA(x) · ∇η(x, t) dt+R′4(VA(x)) (4.85)
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Consequently

∂L
∂VV

=

T∫
0

VV(x) · ∇γ(x, t) dt+R′5(VV(x)) (4.86)

∂L
∂VT

=

T∫
0

VT (x) · ∇µ(x, t) dt+R′6(VT (x)) (4.87)

For the derivative in relation to CT (x, t) consider the directional derivative in the direction ϕT (x, t).

∂L
∂CT

ϕT (x, t) =

T∫
0

∫
Ω

d

dτ
(G(CA(x, t), CV(x, t), CT (x, t) + τϕT (x, t), λT (x), λA(x), λV(x), DV(x),

VV(x), DA(x), VA(x), DT (x), VT (x), k1(x), k2(x), k3(x))− u(x, t))q(x, t)dxdt

+

T∫
0

∫
Ω

d

dτ

(
∂

∂t
(CT (x, t) + τϕT (x, t)) +∇(VT (x)(CT (x, t) + τϕT (x, t)))

+∇ · (DT (x)∇(CT (x, t) + τϕT (x, t)))

+ (k0 + k2)(x)(CT (x, t) + τϕT (x, t))µ(x, t)

−k2(x)(CT (x, t) + τϕT (x, t))γ(x, t)) dxdt

=

T∫
0

∫
Ω

∂G

∂CT
ϕT (x, t)q(x, t)dxdt

+

T∫
0

∫
Ω

∂ϕT
∂t

µ(x, t) + VT (x)ϕT (x, t)∇µ(x, t) +DT (x)∇ϕT (x, t)∇µ(x, t)

+ (k0 + k2)(x)ϕT (x, t)µ(x, t)− k2(x)ϕT (x, t)γ(x, t)dxdt

=

T∫
0

∫
Ω

(
∂G

∂CT
q(x, t)− ∂µ

∂t
(x, t) + VT (x)∇µ(x, t)−∇ · (DT (x)∇µ(x, t))

+(k0 + k2)(x)µ(x, t)− k2(x)γ(x, t))ϕT (x, t)dxdt

+

∫
T

ϕT (x, t)µ(x, t)
∣∣∣T
0

+

T∫
0

∫
∂Ω

DT (x)ϕT (x, t)∇µ · ndxdt

(4.88)

As the above equation is zero, we have

∂µ

∂t
= VT (x)∇µ(x, t)−∇ · (DT (x)∇µ(x, t)) + (k0 + k2)(x)µ(x, t)

− k2(x)γ(x, t) +
∂G

∂CT
q(x, t)

subject to µ(x, T ) = 0 for all x ∈ T .

(4.89)

Similarly, one can calculate the derivatives in relation to CA(x, t) and CV(x, t):
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∂L
∂CA

ϕA(x, t) =

T∫
0

∫
Ω

(
∂G

∂CA
q(x, t)− ∂η

∂t
(x, t) + VA(x)∇η(x, t)−∇ · (DA(x)∇η(x, t)) dxdt

+ (k0 + k1)(x)η(x, t) −k1(x)µ(x, t))ϕA(x, t)dxdt+

∫
A

ϕA(x, t)η(x, t)
∣∣∣T
0

+

T∫
0

∫
∂Ω

DA(x)ϕA(x, t)∇η · ndxdt

(4.90)

with

∂η

∂t
= VA(x)∇η(x, t)−∇ · (DA(x)∇η(x, t)) + (k0 + k1)(x)η(x, t)− k1(x)µ(x, t) +

∂G

∂CA
q(x, t)

subject to η(x, T ) = 0 for all x ∈ A.

(4.91)

and

∂L
∂CV

ϕV(x, t) =

T∫
0

∫
Ω

(
∂G

∂CV
q(x, t)− ∂γ

∂t
(x, t) + VV(x)∇γ(x, t)−∇ · (DV(x)∇γ(x, t)) dxdt

+(k0 + k3)(x)γ(x, t)− k3(x)η(x, t))ϕV(x, t)dxdt

+

∫
V

ϕV(x, t)γ(x, t)
∣∣∣T
0

+

T∫
0

∫
∂Ω

DV(x)ϕV(x, t)∇γ · ndxdt

(4.92)

with

∂γ

∂t
= VV(x)∇γ(x, t)−∇ · (DV(x)∇γ(x, t)) + (k0 + k3)(x)γ(x, t)− k3(x)η(x, t) +

∂G

∂CV
q(x, t)

subject to γ(x, T ) = 0 for all x ∈ V.

(4.93)

∂L
∂q

= G(CA(x, t), CV(x, t), CT (x, t) + τϕT (x, t), λT (x), λA(x), λV(x), DV(x), VV(x), DA(x),

VA(x), DT (x), VT (x), k1(x), k2(x), k3(x))− u(x, t)

(4.94)

4.9 Regularization

The regularization consists in the determination of the smoother approximate solution compatible

with the data of observation for a certain level of noise. The fact of seeking a smoother solution

(regular) transforms the ill-posed problem in a well-posed, but still able to reflect the physical

situation to be modeled [33].

We choose the regularization parameter as the lowest value one able to produce a stable solution

to the problem, reducing the influence of a-priori information and also the bias. Then we apply

the regularization incorporating a-priori knowledge and the gradient regularization as follows in the

next sections.
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4.9.1 Regularization Incorporating A-priori Knowledge

We will here use a-priori knowledge in the regularization functional for each parameter of the

problem. Whereas, for example, the velocity of the radioactive concentration in the artery has a

typical value of V ∗A, we can regularize VA by

R(VA(x)) =
α

2

∫
Ω

(VA − V ∗A)2dx (4.95)

where α denotes the regularization parameter, α ∈ R+. As seen in [6], such a-priori regularization

can also be generalized to all biological parameters of vector p as follows

Rα,Ψ(g(ω), g∗) =
α

2

∫
Ψ

(g(ω)− g∗)2dω (4.96)

for a set Ψ ⊂ Ω or Ψ = [0, T ] and α ∈ R+. In the following, the a-priori knowledge will be

incorporated in each parameter of the problem independently. We denote our a-priori knowledge

with k1, k2, k3, VA, VT , VV , DA, DT , DV and for the sake of simplicity, we write Rα,A(VA(x)) instead

of Rα,A(VA(x), V ∗A).

4.9.2 Gradient Regularization

Like the a-priori regularization we also will apply the Gradient regularization in each parameter

independently. The regularization of the gradient is designed to ensure (guarantee) smoothness in

space and time, adding a bound to the spatial gradients (∇k1,∇k2,∇k3,∇VA,∇VT ,∇VV ,∇DA,∇DT ,
∇DV). The regularization added to the terms is given by

Rξ,Φ(g) =
ξ

2

∫
Φ

|∇g(x)|2dx (4.97)

with Φ ∈ Ω. Thus, replacing in the equation (4.80) by the a-priori and gradient regularizations, we

have
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L(u(x, T ), λT (x), λA(x), λV(x), CA(x, t), CT (x, t), CV(x, t), DT (x), DA(x), DV(x),

VT (x), VA(x), VV(x), k1(x), k2(x), k3(x); q(x, t), µ(x, t), η(x, t), γ(x, t))

=
1

2

T∫
0

∫
Ω

(u− uk+ 1
2
)2

uk
dxdt

+Rα,T (λT (x)) +Rα,T (λA(x)) +Rα,T (k2(x)) +Rα,T (k1(x))

+Rα,T (VT (x)) +Rα,T (DT (x)) +Rα,A(λA(x)) +Rα,A(λV(x))

+Rα,A(k1(x)) +Rα,A(k3(x)) +Rα,A(VA(x)) +Rα,A(DA(x))

+Rα,V(λV(x)) +Rα,V(λT (x)) +Rα,V(k2(x)) +Rα,V(k3(x))

+Rα,V(VV(x)) +Rα,V(DV(x)) +Rξ,T (λT (x)) +Rξ,T (λA(x))

+Rξ,T (k2(x)) +Rξ,T (k1(x)) +Rξ,T (VT (x)) +Rξ,T (DT (x))

+Rξ,A(λA(x)) +Rξ,A(λV(x)) +Rξ,A(k1(x)) +Rξ,A(k3(x))

+Rξ,A(VA(x)) +Rξ,A(DA(x)) +Rξ,V(λV(x)) +Rξ,V(λT (x))

+Rξ,V(k2(x)) +Rξ,V(k3(x)) +Rξ,V(VV(x)) +Rξ,V(DV(x))

+

T∫
0

∫
Ω

(G(λT (x), λA(x), λV(x), CA(x, t), CT (x, t), CV(x, t), DT (x), DA(x), DV(x),

VT (x), VA(x), VV(x))− u)qdxdt

+

T∫
0

∫
T

(
∂CT (x, t)

∂t
−∇(VT (x)CT (x, t))−∇ · (DT (x)∇CT (x, t))− k1(x, y)CA(x, t)

+(k0 + k2)(x)CT (x, t)

)
µ(x, t)dxdt

+

T∫
0

∫
A

(
∂CA(x, t)

∂t
−∇(VA(x)CA(x, t))−∇ · (DA(x)∇CA(x, t))− k3(x)CV(x, t)

+(k0 + k1)(x)CA(x, t)

)
η(x, t)dxdt

+

T∫
0

∫
V

(
∂CV(x, t)

∂t
−∇(VV(x)CV(x, t))−∇ · (DV(x)∇CV(x, t))− k2(x)CT (x, t)

+(k0 + k3)(x)CV(x, t)

)
γ(x, t)dxdt

(4.98)

By the gradient regularization we have the guarantee that the reconstructed parameters k1, k2, k3, VA,

VT , VV , DA, DT , DV become parameters in the Hilbert space.
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Thus

L(u(x, T ), λT (x), λA(x), λV(x), CA(x, t), CT (x, t), CV(x, t), DT (x), DA(x), DV(x),

VT (x), VA(x), VV(x), k1(x), k2(x), k3(x); q(x, t), µ(x, t), η(x, t), γ(x, t))

=
1

2

T∫
0

∫
Ω

(u− uk+ 1
2
)2

uk
dxdt

+
α

2

∫
T

(λT (x)− λ∗T )2 + (λA(x)− λ∗A)2 + (k2(x)− k∗2)2 + (k1(x)− k∗1)2

+(VT (x)− V ∗T )2 + (DT (x)−D∗T )2dx

+

∫
A

(λA(x)− λ∗A)2 + (λV(x)− λ∗V )2 + (k1(x)− k∗1)2 + (k3(x)− k∗3)2

+(VA(x)− V ∗A)2 + (DA(x)−D∗A)2dx

+

∫
V

(λV(x)− λ∗V )2 + (λT (x)− λ∗T )2 + (k2(x)− k∗2)2 + (k3(x)− k∗3)2

+(VV(x)− V ∗V )2 + (DV(x)−D∗V )2dx

)

+
β

2

∫
T

(λT (x) + λA(x)− 1)2dx+

∫
A

(λA(x) + λV (x)− 1)2dx+

∫
V

(λV(x) + λT (x)− 1)2dx

+

∫
S

(λT (x) + λA(x) + λV (x)− 1)2dx

)

+
ρ

2

∫
T

(λT (x)λA(x))
2dx+

∫
A

(λA(x)λV (x))2dx+

∫
V

(λV(x)λT (x))
2dx +

∫
S

(λT (x)λA(x)λV (x))2dx

)

+
ξ

2

∫
T

|∇λT (x)|2 + |∇λA(x)|2 + |∇k2(x)|2 + |∇k1(x)|2 + |∇VT (x)|2 + |∇DT (x)|2 dx

+

∫
A

|∇λA(x)|2 + |∇λV(x)|2 + |∇k1(x)|2 + |∇k3(x)|2 + |∇VA(x)|2 + |∇DA(x)|2dx

+

∫
V

|∇λV(x)|2 + |∇λT (x)|2 + |∇k2(x)|2 + |∇k3(x)|2 + |∇VV(x)|2 + |∇DV(x)|2
)
dx

+

T∫
0

∫
Ω

(G(λT (x), λA(x), λV(x), CA(x, t), CT (x, t), CV(x, t), DT (x), DA(x), DV(x),

VT (x), VA(x), VV(x))− u)qdxdt

+

T∫
0

∫
T

(
∂CT (x, t)

∂t
−∇(VT (x)CT (x, t))−∇ · (DT (x)∇CT (x, t))− k1(x)CA(x, t)

+(k0 + k2)(x)CT (x, t)

)
µ(x, t)dxdt

+

T∫
0

∫
A

(
∂CA(x, t)

∂t
−∇(VA(x)CA(x, t))−∇ · (DA(x)∇CA(x, t))− k3(x)CV(x, t)

+(k0 + k1)(x)CA(x, t)

)
η(x, t)dxdt

+

T∫
0

∫
V

(
∂CV(x, t)

∂t
−∇(VV(x)CV(x, t))−∇ · (DV(x)∇CV(x, t))− k2(x)CT (x, t)

+(k0 + k3)(x)CV(x, t)

)
γ(x, t)dxdt

(4.99)
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The optimality conditions for k1(x), k2(x), k3(x), VT (x), VA(x), VV(x), DT (x), DA(x) and DV(x)

are

0 =
∂L
∂k1

= α
(
ΛT (x)(k1(x)− k∗1) + ΛA(x)(k1(x)− k∗1)

)
− ξ
(
ΛT (x)∆k1(x) + ΛA(x)∆k1(x)

)
−

T∫
0

CA(x, t)µ(x, t)dt+

T∫
0

CA(x, t)η(x, t)dt

(4.100)

0 =
∂L
∂k2

= α
(
ΛT (x)(k2(x)− k∗2) + ΛV(x)(k2(x)− k∗2)

)
− ξ
(
ΛT (x)∆k2(x) + ΛV(x)∆k2(x)

)
+

T∫
0

CT (x, t)µ(x, t)dt−
T∫

0

CT (x, t)γ(x, t)dt

(4.101)

0 =
∂L
∂k3

= α
(
ΛA(x)(k3(x)− k∗3) + ΛV(x)(k3(x)− k∗3)

)
− ξ
(
ΛA(x)∆k3(x) + ΛV(x)∆k3(x)

)
−

T∫
0

CV(x, t)η(x, t)dt+

T∫
0

CV(x, t)γ(x, t)dt

(4.102)

0 =
∂L
∂VT

=

T∫
0

VT (x) · ∇µ(x, t) dt+ α(VT (x)− V ∗T )− ξ(ΛT (x)∆VT (x)) (4.103)

0 =
∂L
∂VA

=

T∫
0

VA(x) · ∇η(x, t) dt+ α(VA(x)− V ∗A)− ξ(ΛA(x)∆VA(x)) (4.104)

0 =
∂L
∂VV

=

T∫
0

VV(x) · ∇γ(x, t) dt+ α(VV(x)− V ∗V )− ξ(ΛV(x)∆VV(x)) (4.105)

0 =
∂L
∂DT

=

T∫
0

∇CT (x) · ∇µ(x, t) dt+ α(DT (x)−D∗T )− ξ(ΛT (x)∆DT (x)) (4.106)

0 =
∂L
∂DA

=

T∫
0

∇CA(x) · ∇η(x, t) dt+ α(DA(x)−D∗A)− ξ(ΛA(x)∆DA(x)) (4.107)

0 =
∂L
∂DV

=

T∫
0

∇CV(x) · ∇γ(x, t) dt+ α(DV(x)−D∗V)− ξ(ΛV(x)∆DV(x)) (4.108)
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5
Identifiability Analysis

This chapter is dedicated to a discussion of the identifiability of all physiological parameters in the

system described by the parabolic differential equations presented in Chapter 3 .

To prove the identifiability this chapter is based on the work of [65].

5.1 Statement of the problem

For this section, consider Figure 5.1 which represents a system for the parameter identification with

a model. Consider also the system given by a parabolic differential equations (3.1), (3.2) and (3.3):

∂CA
∂t

= ∇ · (VA(x)CA +DA(x)∇CA)− (k0(x) + k1(x))CA + k3(x)CV

∂CT
∂t

= ∇ · (VT (x)CT +DT (x)∇CT )− (k0(x) + k2(x))CT + k1(x)CA

∂CV
∂t

= ∇ · (VV(x)CV +DV(x)∇CV)− (k0(x) + k3(x))CV + k2(x)CT

Considering the inverse problem for the full model we want to identify all parametersDA, DT , DV , VA, VT ,

VV , k1, k2 and k3 from the measurement CA(x, t) + CT (x, t) + CV(x, t) = u(x, t).

5.2 One-Component Reaction-Diffusion Model

In order to gain a first understanding we can write:

∂CA
∂t

= ∇ · (VA(x)CA +DA(x)∇CA)− (k0(x) + k1(x))CA + f(x, t), ∀x ∈ Ω, T > 0 (5.1)

where CA = CA(x, t) is twice differentiable, f(x, t) is a input function and the boundary conditions

given by (3.5). We consider also that the input functions can be measured, i.e, are known functions.

The output y of the measurement system is given by

y(xp, t) = CA(xp, t) xp ∈ Ωp, t ≥ 0 (5.2)
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Consider that the equation below represents the model problem

∂CAm
∂t

= ∇ · (VAm(x)CAm +DAm(x)∇CAm)− (k0(x) + k1(x))CAm + f(x, t) (5.3)

with x ∈ Ω, t > 0 and

ym(xp, t) = CAm(xp, t) (5.4)

where CAm(x, t) is the state of the model and the subscript m denotes model quantities. The

boundary condition for (5.3) takes the same form as in (3.15).

Definition 5.2.1 (Identifiable Parameters) We shall call an unknown parameter identifiable if it

can be determined uniquely in all points of the domain Ω by using the input-output relation of the

system and the input-output data [65].

If DA(x) = DAm(x), VA(x) = VAm(x) and k(x) = km(x), follow uniquely from the relation

e(xp, t) = y(xp, t) − ym(xp, t) = 0, for all xp ∈ Ω, t ≥ 0, y(xp, t) given by (5.2) and ym(xp, t)

by (5.4), thus DA(x), VA(x) and k(x) are said to be identifiable,. When e(xp, t) = 0, ∀xp ∈ Ω,

t ≥ 0 in the identification process of the Figure 5.1, the parameters are adjusted by some proper

algorithm so that e is zero in A(Ω).

Figure 5.1: Parameter identification by using a model [65].

Assume that CA(x, t) is measured at all points of x ∈ Ω, t ≥ 0 and define the difference variable

e(x, t) = CA(x, t) − CAm(x, t), thus we have the Lemma 5.2.2, where the spatial one-dimensional

case is considered:

Lemma 5.2.2 The identity e(x, t) = 0 (equations (5.2), (5.4)) for all x ∈ Ω and t ≥ 0 holds if and

only if

∂

∂x

[
(DA(x)−DAm(x))

∂CAm
∂x

(x, t) + (VA(x)− VAm(x))CAm(x, t)

]
+ (k(x)−km(x))CAm(x, t) = 0

(5.5)

with x ∈ Ω and t > 0.
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Proof. For the proof of Lemma 5.2.2, consider the equations (5.1), (5.4) and (5.5).

∂e

∂x
=

∂

∂x

(
DA

∂e

∂x
+ VAe

)
+ ke+

∂

∂x

(
(DA −DAm)

∂CAm
∂x

+ (VA − VAm)CAm

)
+ (k − km)CAm

=
∂

∂x

(
DA

∂e

∂x
+ VAe

)
+ ke ∀x ∈ Ω and t > 0

(5.6)

The initial condition for (5.6) is given by e(0) = u(0)− um(0) = 0. Thus, due to the uniqueness of

the solution, we have e(x, t) = 0 for all x ∈ Ω and t ≥ 0.

5.2.1 Identifiability of DA(x)

It is assumed that e(x, t) = 0 ∀ x ∈ Ω , ∀ t ≥ 0, VA(x) and k1(x) are known or both vanish.

All the results are represented in terms of the state of the model CAm . However, since e ≡ 0, CAm

may be replaced by the state of the system CA.

Let us define

E(t) =

{
x ∈ Ω

∣∣∣∂CAm
∂x

(x, t) = 0

}
G(t) = Ω− E(t) (5.7)

Proposition 5.2.3 DA is identifiable in A(Ω) if there exists some t1 > 0 such that

E(t1) 6= ∅ (5.8)

and

G(t1) = Ω (5.9)

where ∅ is the empty set and G is the closure of G. The condition (5.9) especially may be replaced

by

meas E(t1) = 0 (5.10)

with meas E being the measure of E.

Proof. Let be q(x) = DA(x)−DAm(x). By the assumption we obtain from (5.5)

∂

∂x

[
q(x)

∂CAm
∂x

]
= 0 for all x ∈ Ω and all t > 0 (5.11)

and

q(x)
∂CAm
∂x

= c(t)

By condition (5.8), there exists t1 such that c(t1) = 0. From condition (5.9), the set {x ∈ Ω|q(x) = 0}
is dense in Ω, since q(x) is a continuous fuction in Ω. We conclude q(x) = 0 for all x ∈ Ω, i.e., DA(x)

is identifiable. Condition (5.10) implies meas G(t1) = meas Ω, and consequently, meas G(t1) =

meas Ω. We have to show G(t1) = Ω. For this, assume Ω−G(t1) 6= ∅. Then, there exists an open
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J such that Ω − G(t1) ⊃ J . From Ω ⊃ G(t1) ∪ J (J and G(t1) are disjoint), we obtain meas Ω ≥
meas G(t1)+ meas J , which implies meas J = 0. (Contradiction).

Now another condition is given for the identifiability of DA(x).

Proposition 5.2.4 DA is identifiable in A(Ω) if

E(t) 6= ∅ for all t > 0 (5.12)

and ⋃
t>0

G(t) = Ω (5.13)

Proof. By (5.12) and Lemma (5.2.2), we obtain q(x)

(
∂CAm
∂x

(x, t)

)
= 0 for all x ∈ Ω and all t > 0,

where q(x) = DA(x) − DAm(x). Set M = ∪t>0G(t). For any x ∈ M , there exists some t(x) > 0

such that x ∈ G(t), i.e.,

(
∂CAm
∂x

)
(x, t) 6= 0. Thus, q(x) = 0 for all x ∈ M , and from condition

(5.13) and the continuity for q(x) it follows that q(x) = 0 for all x ∈ Ω.

Note that the condition (5.12) is stricter than (5.8), while condition (5.13) is weaker than (5.9).

Proposition 5.2.5 DA is not identifiable if ∪t>0G(t) is not dense in Ω, especially if
⋂
t>0E(t)

includes an open subset.

Proof. We show that DA(x0) 6= DAm(x0) for some x0 ∈ Ω even if e(x, t) = 0 for all x ∈ Ω and

all t ≥ 0 when ∪t>0G(t) is not dense in Ω. By the first condition, there exists an open subset J

satisfying Ω−∪t>0G(t) ⊃ J . Take x0 and ε > 0 such that J ⊃ B(x0, ε), where B(x0, ε) ist one ball

with center x0 and radius ε and let r(x) be a twice continuously differentiable function in Ω with

support in B(x0, ε) and r(x0) 6= 0. Assume here DA(x) = DAm(x) + r(x). If x ∈ B(x0, ε), then
∂CAm
∂x

= 0 for all t > 0 since

x ∈ J ⊂ Ω−
⋃
t>0

G(t) ⊂ Ω−
⋃
t>0

G(t) =
⋂
t>0

E(t)

and if x /∈ B(x0, ε), then (DA(x)−DAm(x))

(
∂CAm
∂x

)
= 0 for all x ∈ Ω and all t > 0 since r(x) = 0.

Thus, by Lemma (5.2.2), e(x, t) = 0 for all x ∈ Ω and all t ≥ 0, and DA(x) is not identifiable.

Moreover, if ∩t>0E(t) includes an open subset , ∪t>0G(t) is not dense in Ω.

Proposition 5.2.6 If E(t1) = ∅ for some t1, then

DA(x)−DAm(x) = (DA(x0)−DAm(x0))exp

− x∫
x0

∂2CAm
∂x2

(s, t1)

∂CAm
∂x

(s, t1)

ds

 (5.14)

for any x and x0 ∈ Ω.

Proof. By the assumption, (5.11) holds in this case, i.e.,

∂CAm
∂x

q′(x) +
∂2CAm
∂x2

q(x) = 0
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The equation (5.14) is a solution of this differential equation under the condition

(
∂CAm
∂x

)
(x, t1) 6=

0.

Proposition 5.2.7 If E(t1) = ∅ for some t1 > 0 and if CAm(x, t) = vm(x)wm(t) for all x ∈ Ω

and t ≥ 0, then DA is not identifiable.

Proof. E(t1) = ∅ implies that wm(t1) 6= 0 and
∂vm
∂x

(x) 6= 0 for any x ∈ Ω. Let DA(x) =

DAm(x) +
1(

∂vm(x)

∂x

) , then DA(x) 6= DAm(x) for all x ∈ Ω, while

(DA(x)−DAm(x))
∂vm(x)

∂x
wm(t) = wm(t)

for all x ∈ Ω and t ≥ 0. Thus,

∂

∂x

{
(DA(x)−DAm(x))

∂CAm
∂x

}
= 0

for all t > 0 and, from Lemma (5.2.2), e(x, t) = 0 for all x ∈ Ω and all t ≥ 0. Thus, DA is not

identifiable.

5.2.2 Identifiability of k1(x)

We now study the identifiability of k1 and to get a first idea we assume that DA(x) and VA(x) are

both known, and that e(x, t) = 0 for all x ∈ Ω and all t ≥ 0. Let us define

F (t) = {x ∈ Ω|CAm(x, t) = 0}

H(t) = Ω− F (t)
(5.15)

Proposition 5.2.8 k1 is identifiable if and only if

⋃
t>0

H(t) = Ω (5.16)

Note that k1 is not identifiable if
⋂
t>0 F (t) includes an open subset.

Proof. By the assmption and Lemma (5.2.2), e(x, t) = 0 if and only if (k1(x)−k1m(x))CAm(x, t) =

0. Certainly satisfied if the initial value CAm(x, 0) > 0 or f > 0. Necessity follows by proceeding

similarly as in the proof of the proposition 5.2.5. The latter statement of the result is self -evident.

5.2.3 Identifiability of VA(x)

It is assumed that e(x, t) = 0 ∀x ∈ Ω , ∀t ≥ 0, DA(x) and k1(x) are known or both vanish.

Let us define

I(t) =
{
x ∈ Ω

∣∣∣CAm(x, t) = 0
}
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L(t) = Ω− I(t) (5.17)

Proposition 5.2.9 VA is identifiable in A(Ω) if there exists some t1 > 0 such that

I(t1) 6= ∅ (5.18)

and

L(t1) = Ω (5.19)

where ∅ is the empty set and L is the closure of L.

Proof. By the assumption we obtain from (5.5)

∂

∂x
[s(x)CAm ] = 0 for all x ∈ Ω and all t > 0 (5.20)

with s(x) = VA(x)− VAm(x), and

s(x)CAm = d(t)

By condition (5.18), there exists t1 such that CAm=0. From condition (5.19), the set {x ∈ Ω|s(x) = 0}
is dense in Ω, s(x) is a continuous fuction in Ω). Thus s(x) = 0 for all x ∈ Ω, i.e., VA is identifiable.

Now another condition is given for the identifiable of VA(x).

Proposition 5.2.10 VA is identifiable if

I(t) 6= ∅ for all t > 0 (5.21)

and ⋃
t>0

L(t) = Ω (5.22)

Proof. By (5.21) and Lemma (5.2.2), we obtain s(x) (CAm(x, t)) = 0 for all x ∈ Ω and all t > 0,

where s(x) = VA(x)− VAm(x). Set P = ∪t>0L(t). For any x ∈ P , there exists some t(x) > 0 such

that x ∈ L(t), i.e., CAm(x, t) 6= 0. Thus, s(x) = 0 for all x ∈ P , and from condition (5.22) and the

continuity for s(x) it follows that s(x) = 0 for all x ∈ Ω.

Proposition 5.2.11 VA is not identifiable if ∪t>0L(t) is not dense in Ω, especially if
⋂
t>0 I(t)

includes an open subset.

Proof. We show that VA(x0) 6= VAm(x0) for some x0 ∈ Ω even if e(x, t) = 0 for all x ∈ Ω and all

t ≥ 0 when ∪t>0L(t) is not dense in Ω. By the first condition for VA, there exists an open subset

R satisfying Ω − ∪t>0L(t) ⊃ R. Take x0 and ε > 0 such that R ⊃ B(x0, ε), (B(x0, ε) is one ball

with center x0 and radius ε) and let t(x) be a twice continuously differentiable function in Ω with

support in B(x0, ε) and t(x0) 6= 0. Assume here VA(x) = VAm(x) + t(x). If x ∈ B(x0, ε), then

CAm = 0 for all t > 0 since

x ∈ R ⊂ Ω−
⋃
t>0

L(t) ⊂ Ω−
⋃
t>0

L(t) =
⋂
t>0

I(t)
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and if x /∈ B(x0, ε), then (VA(x)−VAm(x))CAm = 0 for all x ∈ Ω and all t > 0 since t(x) = 0. Thus,

by Lemma (5.2.2), e(x, t) = 0 for all x ∈ Ω and all t ≥ 0, and VA is not identifiable. Moreover, if

∩t>0I(t) includes an open subset, ∪t>0L(t) is not dense in Ω.

Proposition 5.2.12 If I(t1) = ∅ for some t1, then

VA(x)− VAm(x) = (VA(x0)− VAm(x0))exp

− x∫
x0

CAm
∂x (s, t1)

CAm(s, t1)
ds

 (5.23)

for any x and x0 ∈ Ω.

Proof. By the assumption, (5.20) holds in this case, i.e.,

s′(x)CAm + s(x)
∂CAm
∂x

= 0

The equation (5.23) is a solution of this differential equation under the condition CAm(x, t1) 6= 0.

The proposition 5.2.12 does not necessarily imply the nonidentifiability of parameter VA(x).

Proposition 5.2.13 If I(t1) = ∅ for some t1 > 0 and if CAm(x, t) is represented as vm(x)wm(t),

then VA is not identifiable.

Proof. I(t1) = ∅ implies that wm(t1) 6= 0 and
∂vm
∂x

(x) 6= 0 for any x ∈ Ω. Let VA(x) =

VAm(x) +
1(

∂vm(x)

∂x

) , then VA(x) 6= VAm(x) for all x ∈ Ω, while

(VA(x)− VAm(x))
∂vm(x)

∂x
wm(t) = wm(t)

for all x ∈ Ω and t ≥ 0. Thus,

∂

∂x
{(VA(x)− VAm(x))CAm} = 0

for all t > 0 and, from Lemma (5.2.2), e(x, t) = 0 for all x ∈ Ω and all t ≥ 0. Thus, VA is not

identifiable.

5.2.4 Identifiability of VA(x), DA(x) and k1(x)

Now we want to analyze the case where the known quantity is CA(x, t) only, while the unknows

are VA(x), DA(x) and k1(x). Fairly restrictive conditions will be required for the identifiability of

all parameters.

Proposition 5.2.14 If the functions CA(x),

(
∂CAm
∂x

)
(x, t) and

(
∂2CAm
∂x2

)
(x, t) are linearly in-

dependent as functions of t on a dense subset in Ω, then VA, DA and k1 are simultaneously identi-

fiable.



5 Identifiability Analysis 66

Proof. By setting

q1(x) = DA(x)−DAm(x)

q2(x) = k1(x)− k1m(x)

q3(x) = VA(x)− VAm(x)

we obtain from (5.5)

q1(x)
∂2CAm
∂x2

(x, t) + q′1(x)
∂CAm
∂x

(x, t) + q2(x)CAm(x, t) + q3(x)
∂CAm
∂x

(x, t) + q3(x)CAm(x, t) = 0

(5.24)

for all x ∈ Ω and all t > 0. From the assumption of linear independence, q1(x) = q′1(x) = q2(x) =

q3(x) = q′3(x) = 0 on some dense set in Ω, and again by continuity, q1(x) = q2(x) = q3(x) = 0 for

all x ∈ Ω.

Proposition 5.2.15 If CAm(x, t) = vm(x)wm(t), then DA, VA and k1 are not simultaneously iden-

tifiable. This statement holds especially at the steady state.

Proof. For any function vm(x) which is twice continuously differentiable, we can select nonzero

functions q1(x), q2(x) and q3(x) which satisfy the following equation:

d

dx

(
q1(x)

dvm
dx

(x) + q3(x)vm(x)

)
+ q2(x)vm(x) = 0 for all x ∈ Ω

Multiplication by wm(t) yields

∂

∂x

(
q1(x)

∂CAm
∂x

(x, t) + q3(x)CAm(x, t)

)
+ q2(x)CAm(x, t) = 0

for all x ∈ Ω and all t > 0. Since q1(x), q2(x) and q3(x) are nonzero, DA, k1 and VA are not

simultaneously identifiable from Lemma (5.2.2).

The above result implies, for example, in the case of the steady state, that it is not sufficient to

consider only the difference e for the identification of DA(x), k1(x) and VA(x). However, if we have

an a priori knowledge that shows DA(x), k1(x) and VA(x) to be constant, the result is obtained.

Now we study the most challenging case, where the known quantity is CA(x, t)+CT (x, t)+CV(x, t)

only, while the unknowns are the other parameters. Fairly restrictive conditions will be required

for the identifiability of all parameters.

5.3 Two-Component Reaction-Diffusion Model

Now we analyze a simplified problem, but already quite realistic model ignoring the portion that

represents the transport and considering only the differential equations that represent the radioac-

tive concentration in artery and tissue.
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Let CAi + CTi = f (measurement) and CTi = 0 for t = 0. Consider the system

∂CAi
∂t

= ∇ · (DAi(x)∇CAi(x, t))− (k0i(x) + k1i(x))CAi(x, t) + k3i(x)CTi(x, t) = 0

∂CTi
∂t

= ∇ · (DTi(x)∇CTi(x, t))− (k0i(x) + k3i(x))CTi(x, t) + k1i(x)CAi(x, t) = 0
(5.25)

We consider also that

CA(x, t) = CA1
(x, t)− CA2

(x, t)

CT (x, t) = CT1(x, t)− CT2(x, t)

DA(x) = DA1(x)

DT (x) = DT1
(x)

k3(x) = k31
(x)

k0(x) = k01(x)

k1(x) = k11(x)

Thus, we have

∂tCA +∇ · (DA(x)∇CA(x, t)) + k3(x)CT (x, t)− (k0(x) + k1(x))CA(x, t)

= ∇ · ((DA2
(x)−DA1

(x))∇CA2
(x, t)) + (k32

(x)− k31
(x))CT2

(x, t)

− ((k02
(x) + k12

(x))− (k01
(x) + k11

(x)))CA2
(x, t)

(5.26)

∂tCT +∇ · (DT (x)∇CT (x, t)) + k1(x)CA(x, t)− (k0(x) + k3(x))CT (x, t)

= ∇ · ((DT2(x)−DT1(x))∇CT2(x, t)) + (k12(x)− k11(x))CA2(x, t)

− ((k02
(x) + k32

(x))− (k01
(x) + k31

(x)))CT2
(x, t)

(5.27)

We have also

CA(x, t) + CT (x, t) = 0 (5.28)

and we consider at the beginning CTi = 0 for t = 0, which implies CT = 0 for t = 0. Then we have

CA + CT = 0 for t = 0⇒ CA = 0 for t = 0

With the considerations made above, we obtain from (5.26), in the time t = 0

∂tCA = ∇·((DA2(x)−DA1(x))∇CA2(x, 0))−((k02(x)+k12(x))−(k01(x)+k11(x)))CA2(x, 0) (5.29)

and for the equation (5.27), considering t = 0 and CT2
(0) = 0

∂tCT = (k12
(x)− k11

(x))CA2
(x, 0) (5.30)
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From the equations (5.29) and (5.30) we have

∂t(CA + CT )
∣∣∣
t=0

= ∇ · ((DA2(x)−DA1(x))∇CA2(x, 0)) (5.31)

and the equation (5.28) implies that

∂t(CA + CT ) = 0⇒ ∇ · ((DA2
(x)−DA1

(x))∇CA2
(x, 0)) = 0 (5.32)

With appropriate initial value CA2
(t = 0) = f(t = 0) it follows that DA2

(x) = DA1
(x) (See

Proposition 5.2.7). Analogous situation can be extended to the three-component model ignoring

the portion that represents the transport.

5.4 Three-Component Reaction-Diffusion Model

Now we want to analyze the three-component model including the portion that represents the

transport and considering the parabolic differential equations that represent the radioactive con-

centration in artery, tissue and vein.

Let be CAi + CTi + CVi = f (measurement) and CTi = CVi = 0 for t = 0. Let be now the system

∂CAi
∂t

= ∇ · (DAi(x)∇CAi(x, t) + VAi(x)CAi(x, t))− (k0i(x) + k1i(x))CAi(x, t) + k3i(x)CVi(x, t) = 0

∂CTi
∂t

= ∇ · (DTi(x)∇CTi(x, t) + VTi(x)CTi(x, t))− (k0i(x) + k2i(x))CTi(x, t) + k1i(x)CAi(x, t) = 0

∂CVi
∂t

= ∇ · (DVi(x)∇CVi(x, t) + VVi(x)CVi(x, t))− (k0i(x) + k3i(x))CVi(x, t) + k2i(x)CTi(x, t) = 0

(5.33)

We take into account the following considerations for CA, CT and CV :

CA(x, t) = CA1
(x, t)− CA2

(x, t)

CT (x, t) = CT1
(x, t)− CT2

(x, t)

CV(x, t) = CV1(x, t)− CV2(x, t)

and for all others parameters:

k3(x) = k31
(x)

k2(x) = k21
(x)

k1(x) = k11
(x)

k0(x) = k01(x)

DA(x) = DA1(x)

DT (x) = DT1
(x)

DV(x) = DV1
(x)

VA(x) = VA1(x)

VT (x) = VT1(x)

VV(x) = VV1
(x)
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Thus making the appropriate replacements, we have

∂tCA −∇ · (DA(x)∇CA(x, t) + VA(x)CA(x, t)) + k3(x)CV(x, t)− (k0(x) + k1(x))CA(x, t)

= −∇ · ((DA2
(x)−DA1

(x))∇CA2
(x, t) + (VA2

(x)− VA1
(x))CA2

(x, t)) + (k32
(x)− k31

(x))CV2
(x, t)

− ((k02
(x) + k12

(x))− (k01
(x) + k11

(x)))CA2
(x, t)

(5.34)

∂tCT −∇ · (DT (x)∇CT (x, t) + VT (x)CT (x, t)) + k1(x)CA(x, t)− (k0(x) + k2(x))CT (x, t)

= −∇ · ((DT2
(x)−DT1

(x)∇CT2
(x, t) + (VT2

(x)− VT1
(x))CT2

(x, t)) + (k12
(x)− k11

(x))CA2
(x, t)

− ((k02
(x) + k22

(x))− (k01
(x) + k21

(x)))CT2
(x, t)

(5.35)

∂tCV −∇ · (DV(x)∇CV(x, t) + VV(x)CV(x, t)) + k2(x)CT (x, t)− (k0(x) + k3(x))CV(x, t)

= −∇ · ((DV2
(x)−DV1

(x))∇CV2
(x, t) + (VV2

(x)− VV2
(x))CV2

(x, t)) + (k22
(x)− k21

(x))CT2
(x, t)

− ((k02
(x) + k32

(x))− (k01
(x) + k31

(x)))CV2
(x, t)

(5.36)

We have also

CA(x, t) + CT (x, t) + CV(x, t) = 0 (5.37)

and we consider at the beginning CTi = CVi = 0 for t = 0, which implies CT = CV = 0 for t = 0.

Then we have

CA + CT + CV = 0 for t = 0⇒ CA = 0 for t = 0

With the considerations made above, we obtain from (5.34), in the time t = 0

∂tCA = −∇ · ((DA2(x)−DA1(x))∇CA2(x, 0) + (VA2(x)− VA1(x))CA2(x, 0))

− (k12(x) + k11(x))CA2(x, 0)
(5.38)

and for the equation (5.35), considering t = 0 and CT2
(0) = 0

∂tCT = (k12(x)− k11(x))CA2(x, 0) (5.39)

and finally, for the equation (5.36), with t = 0 and CV2
(0) = 0

∂tCV = 0 (5.40)

From the equations (5.38), (5.39) and (5.40) we have

∂t(CA + CT + CV)
∣∣∣
t=0

= −∇ · ((DA2(x)−DA1(x))∇CA2(x, 0) + (VA2(x)− VA1(x))CA2(x, 0))

(5.41)

and the equation (5.37) imply that



5 Identifiability Analysis 70

CA + CT + CV = 0

⇒ −∇ · ((DA2
(x)−DA1

(x))∇CA2
(x, 0) + (VA2

(x)− VA1
(x))CA2

(x, 0)) = 0
(5.42)

Assuming that VA is known, one can identify DA.



6
Numerical solution

This Chapter is intended to a numerical discussion on the problem presented in Chapter 3. First

we make a brief discussion involving the combination of the EM-algorithm and the parameter

identification problem in a single algorithm as a way to clarify how one solves the problem. In

Section 6.2 we discuss the discretization of the set of differential equations which describe the

problem in question. Therefore we present two methods that can be used to solve the optimization

problem (4.76), the Gradient-Method and Forward-Backward Splitting and the idea of solving our

problem numerically. Finally we want to discuss the process of convergence to the problem proposed

in this work.

6.1 EM - Algorithm and Parameter Identification Problem

In this section we explain how the problem is treated numerically. Here we work with the EM-

algorithm and the parameter identification problem together in each iteration, i.e., to solve the

problem of minimizing (4.76) we need to know the value of uk+ 1
2
, so we need to calculate first the

k + 1
2 -th step of the EM-algorithm:

uk+ 1
2

=
uk
K∗1

K∗
(

f

Kuk

)
(6.1)

After solving the associated lagrangean functional we calculate all the parameters that composes

the vector pk+ 1
2
. Finally the value of G(pk+ 1

2
) = uk+1 is updated continuing the process and thus

allowing the calculation of the next EM-iteration. The procedure is described in the Figure 6.1.

6.2 Discretization of the Differential Equations

We want to discuss in this section the discretization of the differential equations which describe

the problem. For this, consider the following system, spatially dependent on x and y and temporal

dependent on t:
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Figure 6.1: The EM - PI scheme [6]. The process starts in uk. Then, using the EM-step, uk+ 1
2

is
estimated. Knowning uk+ 1

2
, we obtain the values of all biological parameters that compose pk+ 1

2
,

within the parameter identification process. Using the image sequence generation functional G, we
obtain uk+1 from those parameters. The next iterate for the EM algorithm is the image sequence
uk+1, instead of uk+ 1

2
.

∂C

∂t
= ∇((V (x)C) + (D(x)∇C))

+

 −diag(k0 + k1) k3 0

0 −diag(k0 + k3) k2

k1 0 −diag(k0 + k2)

C
(6.2)

Where C =

 CA

CV

CT

, D =

 DA

DV

DT

 and V =

 VA

VV

VT

.

We discretize the first time derivative with the operator splitting method using the notation C(tk) =

Cτ (k). Then we obtain

(i)
Cτ
(
k + 1

3

)
− Cτ (k)

τ
=

∂

∂x

(
Dx

∂Cτ

∂x

(
k +

1

3

)
+ VxC

τ

(
k +

1

3

))
(6.3)

(ii)
Cτ
(
k + 2

3

)
− Cτ

(
k + 1

3

)
τ

=
∂

∂y

(
Dy

∂Cτ

∂y

(
k +

2

3

)
+ VyC

τ

(
k +

2

3

))
(6.4)

(iii)

Cτ (k + 1)− Cτ
(
k + 2

3

)
τ

=

 −diag(k0 + k1) k3 0

0 −diag(k0 + k3) k2

k1 0 −diag(k0 + k2)

Cτ (k + 1)

(6.5)

The equations (6.3) and (6.4) can be discretized with the Scharfetter-Gummel Scheme [31]. We

treat both equations separately and it remains to discretize the spatial derivative. For the x-scale

we choose a grid Gx = {xi = ihx − 1|i = 0, ..., 2N} with the step size at the x-scale hx and for

y-scale, respectively Gy = {yj = jhy|j = 0, ...,M} with the step size hy.
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Consider now only the equation (6.3). Note that

V +
x = 0.5(Vx(xi, yj) + Vx(xi+1, yj)), ∇W+

x = 0.5(∇Wx(xi, yj) +∇Wx(xi+1, yj)) (6.6)

and

V −x = 0.5(Vx(xi, yj) + Vx(xi−1, yj)), ∇W−x = 0.5(∇Wx(xi, yj) +∇Wx(xi−1, yj)) (6.7)

where ∇Wx = D−1
x Vx (D << V ). Making the discretization of the equation with respect to x,

assuming j = j̄ and solving the equation with the implicit Euler method, we have (for details see

[31]).

Cτj̄

(
k +

1

3

)
= (I − τLx)−1Cτj̄ (k) (6.8)

with the matrix Lx = (kxi,j), where we consider the following entries:

• For Vx < 0:

kxi,i = − V +
x

hx · exp (∇W+
x · hx)− hx

− V −x · exp (∇W−x · hx)

hx · exp (∇W−x · hx)− hx
(6.9)

kxi+1,i =
V +
x

hx · exp (∇W+
x · hx)− hx

(6.10)

kxi−1,i =
V −x · exp (∇W−x · hx)

hx · exp (∇W−x · hx)− hx
(6.11)

• For Vx ≥ 0:

kxi,i = − V +
x

hx − exp (−∇W+
x · hx)

− V −x · exp (−∇W−x · hx)

hx− exp (−∇W−x · hx)
(6.12)

kxi+1,i =
V +
x

hx − exp (−∇W+
x · hx)

(6.13)

kxi−1,i =
V −x · exp (−∇W−x · hx)

hx− exp (−∇W−x · hx)
(6.14)

where Vx represents the velocity parameter in the x-direction (VxA in artery, VxT in tissue and VxV

in vein). Calculating this solution for all j̄ = 1, . . . ,M − 1, we can find the solution matrix

Cτ
(
k +

1

3

)
= Cτj̄=1

(
k +

1

3

)
, . . . , Cτj̄=M−1

(
k +

1

3

)
= Cτi,j

(
k +

1

3

)
(6.15)

for i = 1, . . . , 2N − 1 and j = 1, . . . ,M − 1. For the initial data, we have

Cτ0,j̄ =
(
Cτi,j(k)

)
i
, for i = 1, . . . , 2N − 1 (6.16)

We have then a solution Cτ
j̄

(
k +

1

3

)
for a fixed j̄.

Similarly, considering now the equation (6.4), we want to make the discretization with respect to

y. Note that

V +
y = 0.5(Vy(xi, yj) + Vy(xi, yj+1)), ∇W+

y = 0.5(∇Wy(xi, yj) +∇Wy(xi, yj + 1)) (6.17)
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and

V −y = 0.5(Vy(xi, yj) + Vy(xi, yj−1)), ∇W−y = 0.5(∇Wy(xi, yj) +∇Wy(xi, yj−1)) (6.18)

We assume now the other variable i = ī as constant and compute a solution for t = k+
2

3
. Similarly

applying the implicit Euler method we have (see [31])

Cīτ

(
k +

2

3

)
= (I − τLy)−1Cτī

(
k +

1

3

)
(6.19)

with the matrix Ly = (kyi,j), where we consider the following entries:

• For Vy < 0:

kyj,j = −
V +
y

hy · exp (∇W+
y · hy)− hy

−
V −y · exp (∇W−y · hy)

hy · exp (∇W−y · hy)− hy
(6.20)

kyj+1,j =
V +
y

hy · exp (∇W+
y · hy)− hy

(6.21)

kyj−1,j =
V −y · exp (∇W−y · hy)

hy · exp (∇W−y · hy)− hy
(6.22)

• For Vy ≥ 0:

kyj,j = −
V +
y

hy − exp (−∇W+
y · hy)

−
V −y · exp (−∇W−y · hy)

hy − exp (−∇W−y · hy)
(6.23)

kyj+1,j =
V +
y

hy − exp (−∇W+
y · hy)

(6.24)

kyj−1,j =
V −y · exp (−∇W−y · hy)

hy − exp (−∇W−y · hy)
(6.25)

Note that the initial conditions in this case are

Cτ0,̄i =

(
Cτi,j

(
k +

1

3

))
j

, for j = 1, . . . ,M − 1 (6.26)

We have then a solution Cτ
ī

(
k +

2

3

)
for a fixed ī. Calculating this solution for all ī = 1, . . . , 2N−1

we can find the solution matrix

Cτ
(
k +

2

3

)
=
(
Cτī=1

(
k +

2

3

)
, . . . , Cτī=2N−1

(
k +

2

3

))T
= Cτi,j

(
k +

2

3

)
(6.27)

for i = 1, . . . , 2N − 1 and j = 1, . . . ,M − 1. Applying both systems alternately leads to a solution

for all i = 1, . . . , 2N − 1 and j = 1, . . . ,M − 1 at any time t. And the boundary values are given

with the boundary conditions, hence we have a solution for every i, j (for more details see [31]).

Finally the equation (6.5) can be easily solved with a few simple calculations. The discretization

of µ, η and γ was performed in the same way.
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6.3 Gradient Method

To solve numerically the equation (4.99) taking into account the conditions of optimalily (4.88) -

(4.94) and (4.100) - (4.108) we use the iterative gradient method.

This method is an algorithm widely used in the optimization problems to find a minimum (global

or local).

Let F be a multivariable function differential. The method then consists in finding a search direction

of a negative gradient of F at x:

d = −∇F (x(j)) (6.28)

from a starting point.

Through the discretization of (6.28) by the forward-differences, we obtain the iterative system below

xk+1(x) = xk − τ∇F (x(j)) (6.29)

considering τ very small.

Following the same reasoning we obtain the following equations (6.30)-(6.43) which allow us to

calculate the desired parameters (considering the spatially dependence on x and y and the temporal

dependence on t, according to the examples presented in Chapter 7).

kk+1
1 (x, y) = kk1 − τ

∂L
∂k1

(pk) (6.30)

kk+1
2 (x, y) = kk2 − τ

∂L
∂k2

(pk) (6.31)

kk+1
3 (x, y) = kk3 − τ

∂L
∂k3

(pk) (6.32)

V k+1
xT (x, y) = V kxT − τ

∂L
∂VxT

(pk) (6.33)

V k+1
yT (x, y) = V kyT − τ

∂L
∂VyT

(pk) (6.34)

V k+1
xA (x, y) = V kxA − τ

∂L
∂VxA

(pk) (6.35)

V k+1
yA (x, y) = V kyA − τ

∂L
∂VyA

(pk) (6.36)

V k+1
xV (x, y) = V kxV − τ

∂L
∂VxV

(pk) (6.37)

V k+1
yV (x, y) = V kyV − τ

∂L
∂VyV

(pk) (6.38)

Dk+1
xT (x, y) = Dk

xT − τ
∂L
∂DxT

(pk) (6.39)

Dk+1
yT (x, y) = Dk

yT − τ
∂L
∂DyT

(pk) (6.40)
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Dk+1
xA (x, y) = Dk

xA − τ
∂L
∂DxA

(pk) (6.41)

Dk+1
yA (x, y) = Dk

yA − τ
∂L
∂DyA

(pk) (6.42)

Dk+1
xV (x, y) = Dk

xV − τ
∂L
∂DxV

(pk) (6.43)

Dk+1
yV (x, y) = Dk

yV − τ
∂L
∂DyV

(pk) (6.44)

Having solved the equations above, we obtain the up of parameters that composes the vector

p. Since these values represent physiological parameters, we want to limit numerically computed

parameters to be physiological values, too. To obtain parameters k1, k2 and k3 lying within a

physiological range [0, ς], we use the projective gradient method:

kk+1 =


1, if kk − τ ∂L

∂k
(pk) > 1;

ς, if kk − τ ∂L
∂k

(pk) < ς;

kk − ∂L
∂k

(pk) else

(6.45)

for τ reasonably small.

After we calculate the parameters that compose the vector p, we are able to upgrade the image

uk+1(x, y, t) via

uk+1(x, y, t) = G(p(x, y))

= G(k1(x, y), k2(x, y), k3(x, y), DT (x, y), DA(x, y), DV(x, y), VT (x, y), VA(x, y), VV(x, y))

(6.46)

that will used in the next EM-iteration step to find uk+ 1
2
, according to the following figure

Figure 6.2: The scheme in the PI process. The j-th iterate is used to compute the j + 1-th iterate
from pj and ∂L. Processing iterates is stopped after m iterations until |pm − pm−1| < ε (ε > 0 is a
specified factor ) is satisfied. This iteration is considered the optimal solution estimated p̃, fulfilling
∂L(p̃) = 0 and being denoted pk+ 1

2
building the base for the next EM-step.

Note that V jA represents both V jxA and V jyA (for the sake of simplicity) and the same also applies

to the diffusion and velocity parameters.
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Taking into account that the problem proposed here depends on various parameters that must

be adjusted numerically in each iteration and it is very time consuming, we use another method

that solves the minimization problem faster. This method, called Forward-Backward Splitting is

presented in the next section.

6.4 Forward-Backward Splitting

As seen in chapter 4, we will apply the Forward-Backward Splitting method for all parameters that

composes the vector p:

kk+1
1 (x, y) = kk1 − τ

∂G
∂k1

(pk)− τ ∂H
∂k1

(pk+1) (6.47)

kk+1
1 + τ(2α(kk+1

1 − k∗1)− 2ξ∆kk+1
1 ) = kk1 − τ

− T∫
0

CAµdt+

T∫
0

CAηdt

 (6.48)

(1 + 2ατ)kk+1
1 (x, y)− 2ατk∗1 − 2ξτ∆kk+1

1 (x, y) = kk1 + τ

T∫
0

CA(x, y, t)µ(x, y, t)dt

−
T∫

0

CA(x, y, t)η(x, y, t)dt

(6.49)

(1 + 2ατ)kk+1
1 (x, y)− 2ξτ

(
kx+1,y − 2kx,y + kx−1,y

dx2
+
kx,y+1 − 2kx,y + kx,y−1

dy2

)

= kk1 (x, y) + τ

T∫
0

CA(x, y, t)µ(x, y, t)dt− τ
T∫

0

CA(x, y, t)η(x, y, t)dt+ 2ατk∗1

(6.50)

(1 + 2ατ − 2ξτBx − 2ξτBy)kk+1
1 (x, y) = kk1 (x, y) + τ

T∫
0

CA(x, y, t)µ(x, y, t)dt

− τ
T∫

0

CA(x, y, t)η(x, y, t)dt+ 2ατk∗1

(6.51)

And, finally

kk+1
1 (x, y) = (1 + 2ατ − 2ξτBx − 2ξτBy)−1kk1 (x, y) + τ

T∫
0

CA(x, y, t)µ(x, y, t)dt− τ
T∫

0

CA(x, y, t)η(x, y, t)dt+ 2ατk∗1

 (6.52)
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In the language of numerical analysis,kk1 (x, y) + τ

T∫
0

CA(x, y, t)µ(x, y, t)dt− τ
T∫

0

CA(x, y, t)η(x, y, t)dt+ 2ατk∗1


gives a forward step with step size τ whereas (1 + 2ατ − 2ξτBx− 2ξτBy)−1 gives a backward step.

Similarly, for k2 and k3 we have

kk+1
2 (x, y) = (1 + 2ατ − 2ξτBx − 2ξτBy)−1kk2 (x, y)− τ

T∫
0

CT (x, y)µ(x, y)dt+ τ

T∫
0

CT (x, y, t)γ(x, y, t)dt+ 2ατk∗2

 (6.53)

kk+1
3 (x, y) = (1 + 2ατ − 2ξτBx − 2ξτBy)−1kk3 (x, y, t) + τ(x, y, t)

T∫
0

CV(x, y, t)η(x, y, t)dt+ τ

T∫
0

CV(x, y, t)γ(x, y, t)dt+ 2ατk∗3


(6.54)

And for the diffusion and velocity parameters we obtain

V k+1
T (x, y) = (1−ατ + ξτBx+ ξτBy)−1

V kT (x, y)− τV kT (x, y) · ∇
T∫

0

µ(x, y, t)dt+ ατV ∗T

 (6.55)

V k+1
A (x, y) = (1−ατ+ξτBx+ξτBy)−1

V kA(x, y)− τV kA(x, y, t) · ∇
T∫

0

η(x, y, t)dt+ ατV ∗A

 (6.56)

V k+1
V (x, y) = (1−ατ + ξτBx + ξτBy)−1

V kV (x, y)− τV kV (x, y) · ∇
T∫

0

γ(x, y, t)dt+ ατV ∗V

 (6.57)

Dk+1
T (x, y) = (1 + ατ − ξτBx − ξτBy)−1Dk

T (x, y)− τ(∇Dk
T (x, y)

T∫
0

∇µ(x, y, t)dt) + ατD∗T

 (6.58)

Dk+1
A (x, y) = (1 + ατ − ξτBx − ξτBy)−1Dk

A(x, y)− τ(∇Dk
A(x, y)

T∫
0

∇η(x, y, t)dt) + ατD∗A

 (6.59)

Dk+1
V (x, y) = (1 + ατ − ξτBx − ξτBy)−1Dk

V(x, y)− τ(∇Dk
V(x, y)

T∫
0

∇γ(x, y, t)dt) + ατD∗V

 (6.60)

A good choice of τ defines a significant speedup, because the dependence on the ill-posedness of the

operator K (the ill-conditioning of the matrix that represents the discretization of K) can make

the iterative scheme very slow.
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Results

In this chapter we present some computed test results on synthetic and real data, performed with

MATLAB (The MathWorksTM , Inc., Natick, MA). We emphasize here that the purpose of this

chapter is to test both reconstruction of biological parameters involved as well as the behavior of

real H15
2 O-PET-scan data qualitatively.

7.1 A Synthetic Data Example

We present here a synthetic data example and we illustrate the reconstruction of parameters. For

this we use an image 79 x 159 pixels in domain Ω. For the radioactive concentration CA in the

artery we use the initial function

CA(x, y, 0) = τ(1− x2)(N − y)y (7.1)

with N = 40, being represented by the following figure:

Figure 7.1: The radioactive concentration CA in artery - t1

The radioactive concentration in the tissue and in vein at the beginning are zero and the time step

is τ = 10−5. The used method to solve numerically we use the Forward-Backward splitting (Section
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6.4). The table below show the biological parameters involved and the corresponding regularization

parameters (a-priori (α) and the gradient regularization (ξ)). The parameter (·)∗ is related to the

equation (4.95).

Parameter Initial Value (·)∗ A-p. Regularization (α) Gradient regularization (ξ)
k1 (1/cm) 0.9 0.89 0.01287520644013148965 0.0008
k2 (1/cm) 0.75 0.7 0.012867926470118801553 0.0001
k3 (1/cm) 0.9 0.85 0.012876216264812848965 0.0001
VxA(cm/s) 0.0001 0.1 0.001024495 0.0001
VyA(cm/s) 700 15 1.1000 0.0001
VxT (cm/s) -50 -5 1.122098745999 0.0001
VyT (cm/s) 0.0001 0.1 0.001024495 0.0001
VxV (cm/s) 0.0001 0.1 0.001024495 0.0001
VyV (cm/s) 700 15 1.1000000001 0.0001

DA(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

DT (cm2/s) 3 ∗ 10(−6) 10(−2) 0.000344 0.000444

DV(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

Table 7.1: Input data for the synthetic example

The parameters k1, k2 and k3 are constants (with a small variation) in all pixels of the image, and

their values of reconstruction are shown in the Table 7.2.

Parameter Reconstruction of the parameter
k1 0.826394154400616 ±4 · 10−10 (1/cm)
k2 0.688651340749675 ±3 · 10−11 (1/cm)
k3 0.826346689791371 ±3 · 10−11 (1/cm)

Table 7.2: Reconstruction of k1, k2 and k3

The figures below show the exact reconstruction of all biological parameters. For all graphics below

the direction y ist represented by u. In order to better visualize the radioactive flow in the artery

and vein tissue the graphics have been plotted with the y axis on the horizontal, rotating the

coordinate system.

Figure 7.2: Reconstruction of VxA Figure 7.3: Reconstruction of VyA
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Figure 7.4: Reconstruction of VxT Figure 7.5: Reconstruction of VyT

Figure 7.6: Reconstruction of VxV Figure 7.7: Reconstruction of VyV

Figure 7.8: Reconstruction of DxA Figure 7.9: Reconstruction of DxT
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Figure 7.10: Reconstruction of DxV

The Figure 7.11 describes the behavior of blood flow that we want to reproduce i.e., the exchange

of materials between artery, tissue and vein. It starts in the left ventricle of the heart, which it

contracts and pumps blood to the largest artery in the body, the aorta. This blood passes through

a network of small blood vessels called capillaries. The capillaries converge to small veins (venules)

that will gradually uniting with each other, become veins and carry blood back to the heart.

Figure 7.11: Exchange of materials. c© 2007 Alexandre Wahl Hennigen

Based on this we present here the reconstructions that represent the radioactive concentrations in

artery, tissue and vein for different times.

Figure 7.12: Reconstruction of CA − t2 Figure 7.13: Reconstruction of CA − t3
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Figure 7.14: Reconstruction of CA − t6 Figure 7.15: Reconstruction of CA − t9

Figure 7.16: Reconstruction of CA − t12 Figure 7.17: Reconstruction of CA − t15

Figure 7.18: Reconstruction of CA − t18 Figure 7.19: Reconstruction of CA − t21
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Figure 7.20: Reconstruction of CT − t6 Figure 7.21: Reconstruction of CT − t9

Figure 7.22: Reconstruction of CT − t12 Figure 7.23: Reconstruction of CT − t15

Figure 7.24: Reconstruction of CT − t18 Figure 7.25: Reconstruction of CT − t21
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Figure 7.26: Reconstruction of CV − t3 Figure 7.27: Reconstruction of CV − t6

Figure 7.28: Reconstruction of CV − t9 Figure 7.29: Reconstruction of CV − t12

Figure 7.30: Reconstruction of CV − t15 Figure 7.31: Reconstruction of CV − t18
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Figure 7.32: Reconstruction of CV − t21

7.2 Parameter Identification on Exact Data - Error Analysis

For this section we performed a simple test using a matrix that represents the real PET-data

(Figure 7.33) and generates an image 65 x 65 pixels. The objective of this test is purely evaluate

the error scale in the reconstruction of physiological parameters involved. The used method to solve

numerically we use the Forward-Backward splitting (Section 6.4). with τ = 10−4. The initial values

and the respective regularization parameters are shown in Table 7.3. The reconstructed parameters

are evaluated based on real parameters taken from [69, 105].

Note that the margin of error is small, considering the fact that we are working with a ill-posed

problem. The error is evaluated based on

||f − f̃ ||∞
||f ||∞

where f denotes the exact parameter and f̃ denotes the parameter reconstruction, being || ||∞ the

suprem-norm. Thus we obtain the following error values:

||k1 − k1,rec||L∞
||k1||L∞

= 0.013177662377619,
||k2 − k2,rec||L∞
||k2||L∞

= 0.022069154633864

||k3 − k3,rec||L∞
||k3||L∞

= 0.017962700703776
||VxA − VxA,rec||L∞

||VxA||L∞
= 0.107200000000000

||VyA − VyA,rec||L∞
||VyA||L∞

= 0.042364570350000
||VxT − VxT ,rec||L∞

||VxT ||L∞
= 0.099845032204912

||VyT − VyT ,rec||L∞
||VyT ||L∞

= 0.10705351
||VxV − VxV,rec||L∞

||VxV ||L∞
= 0.107253510

||VyV − VyV,rec||L∞
||VyV ||L∞

= 0.042164507035
||DA −DA,rec||L∞

||DA||L∞
= 0.442795670666667

||DT −DT ,rec||L∞
||DT ||L∞

= 0.441155366666667
||DV −DV,rec||L∞

||DV ||L∞
= 0.442829583333333

with k1,rec, k2,rec, k3,rec, etc. denoting the computed reconstructions.
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7.3 Parameter Identification for Real PET-System

We present now an example in order to analyze the reconstruction of the parameters for a specific

case. Thus, we use an operator K (16512 x 4225) associated with the PET-real image given by the

following figure:

Figure 7.33: Synthetic image. Forward operator K from real PET scanner

By a given K we are able to produce an image that represents the behavior of real H15
2 O-PET-scan

data. For this case we use an image 65 x 65 pixels, in domain Ω.

For the radioactive concentration CA in the artery we use the initial function given by the equation

(7.1) with N = 50 and the time step τ = 3 · 10−5. The radioactive concentration in artery at the

beginning can be visualized by the Figure 7.34.

Figure 7.34: The radioactive concentration CA in artery - t1

As in the previous example, the radioactive concentration in the tissue and in vein at the beginning
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are zero and the used method to solve numerically we use the Forward-Backward splitting (Section

6.4). All the biological parameters involved are given by the following table.

Parameter Initial Value (·)∗ A-p. Regularization (α) Gradient regularization (ξ)
k1(∗)(1/cm) 0.9 (0) 0.89 0.017148965 0.0008
k2(∗)(1/cm) 0.75 (0) 0.7 0.015801553 0.0001
k3(1/cm) 0.9 0.85 0.01648965 0.0001
VxA(cm/s) 0.0001 0.1 0.001024495 0.0001
VyA(cm/s) 700 15 1.1000 0.0001
VxT (cm/s) -50 -5 1.122098745999 0.0001
VyT (cm/s) 0.0001 0.1 0.001024495 0.0001
VxV (cm/s) 0.0001 0.1 0.001024495 0.0001
VyV (cm/s) 700 15 1.1000000001 0.0001

DA(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

DT (cm2/s) 3 ∗ 10(−6) 10(−2) 0.000344 0.000444

DV(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

Table 7.3: Input data for a first real example

Here we also evaluate the behavior of radioactive flow when some interval of k1 e k2 is equal to

zero and therefore, in the above table, the symbol (∗) refers to the fact that k1 and k2 are not

considered constant across the region of interest. When k1 = k2 = 0 there is no exchange of

materials from the artery to the tissue and from the tissue to the vein, and this means that the

radioactive concentration (in this region) in the tissue and in the vein are zero.

The reconstruction of k3 are always constant (therefore the figure is omitted) with value 0.80611044044±
4 ·10−9/cm. The following figures refer to the reconstruction of biological parameters for real PET-

data:

Figure 7.35: Reconstruction of k1 Figure 7.36: Reconstruction of k2
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Figure 7.37: Reconstruction of VxA Figure 7.38: Reconstruction of VyA

Figure 7.39: Reconstruction of VxT Figure 7.40: Reconstruction of VyT

Figure 7.41: Reconstruction of VxV Figure 7.42: Reconstruction of VyV
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Figure 7.43: Reconstruction of DxA Figure 7.44: Reconstruction of DxT

Figure 7.45: Reconstruction of DxV

We want to introduce now, for the same example above, the reconstruction of some of these param-

eters (but with different regularization parameters) with u degraded by Poisson distributed noise

in that f is calculated by f = γ(Ku+ n), for different values of γ:

Figure 7.46: The figures above represent the reconstruction of k1 for noise-free case (left) and k1

degraded by Poisson noise with γ = 5 (middle) and γ = 10 (right), with n = 0.0055.
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Figure 7.47: The figures above represent the reconstruction of k2 for noise-free case (left) and k2

degraded by Poisson noise with γ = 5 (middle) and γ = 10 (right), with n = 0.0055.

Figure 7.48: The figures above represent the reconstruction of VyA degraded by Poisson noise with
γ = 1 (left), γ = 5 (middle) and γ = 10 (right), with n = 0.0055.

Figure 7.49: The figures above represent the reconstruction of VxT degraded by Poisson noise with
γ = 1 (left), γ = 5 (middle) and γ = 10 (right), with n = 0.0055.

Figure 7.50: The figures above represent the reconstruction of VyV degraded by Poisson noise with
γ = 1 (left), γ = 5 (middle) and γ = 10 (right), with n = 0.0055.
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Figure 7.51: The figures above represent the reconstruction of DA degraded by Poisson noise with
γ = 1 (left), γ = 5 (middle) and γ = 10 (right), with n = 0.0055.

Figure 7.52: The figures above represent the reconstruction of DT degraded by Poisson noise with
γ = 1 (left), γ = 5 (middle) and γ = 10 (right), with n = 0.0055.

Finally, we present here the reconstructions that represent the radioactive concentrations in artery,

tissue and vein for the example presented in beginning of this section, for different times:

Figure 7.53: Reconstruction of CA − t3 Figure 7.54: Reconstruction of CA − t6
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Figure 7.55: Reconstruction of CA − t9 Figure 7.56: Reconstruction of CA − t12

Figure 7.57: Reconstruction of CA − t15 Figure 7.58: Reconstruction of CA − t18

Figure 7.59: Reconstruction of CA − t21 Figure 7.60: Reconstruction of CT − t3
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Figure 7.61: Reconstruction of CT − t6 Figure 7.62: Reconstruction of CT − t9

Figure 7.63: Reconstruction of CT − t12 Figure 7.64: Reconstruction of CT − t15

Figure 7.65: Reconstruction of CT − t18 Figure 7.66: Reconstruction of CT − t21
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Figure 7.67: Reconstruction of CV − t3 Figure 7.68: Reconstruction of CV − t6

Figure 7.69: Reconstruction of CV − t9 Figure 7.70: Reconstruction of CV − t12

Figure 7.71: Reconstruction of CV − t15 Figure 7.72: Reconstruction of CV − t18
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Figure 7.73: Reconstruction of CV − t21

Thus we are able to produce the graphics for u = CA + CT + CV as follows:

Figure 7.74: Reconstruction of u− t3 Figure 7.75: Reconstruction of u− t6

Figure 7.76: Reconstruction of u− t9 Figure 7.77: Reconstruction of u− t12
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Figure 7.78: Reconstruction of u− t15 Figure 7.79: Reconstruction of u− t18

Figure 7.80: Reconstruction of u− t21

Note that as the operator K has values equal to zero (outside the circle bounded by K), exactly in

this region we can not reconstruct the image u, therefore u equals zero.

7.3.1 Second Example of Parameter Identification on Real PET-System

As a third and final example of this work, we will use again the operator K that represents the real

PET-matrix presented above, but with the aim of analyzing a new case considering different input

values for k1, k2 and k3. The input values can be visualized in the Table 7.4.

For the radioactive concentration CA in the artery we use the initial function given by the equation

(7.1), with N = 50 and the time step τ = 3 · 10−5 in domain Ω. The used method to solve

numerically we use the Forward-Backward splitting (Section 6.4). The radioactive concentration in

artery at the beginning can be visualized by the Figure 7.34. The reconstruction of k3 are always

constant (therefore the figure is omitted) with value 0.010686812999361± 4 · 10−81/cm.
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Parameter Initial Value (·)∗ A-p. Regularization (α) Gradient regularization (ξ)
k1(∗)(1/cm) 0.9 (0) 0.89 0.017148965 0.0008
k2(∗)(1/cm) 0.75 (0) 0.7 0.016801553 0.0001
k3(1/cm) 0.01 0.85 0.051822197678965 0.0001
VxA(cm/s) 0.0001 0.1 0.001024495 0.0001
VyA(cm/s) 700 15 1.1000 0.0001
VxT (cm/s) -50 -5 1.122098745999 0.0001
VyT (cm/s) 0.0001 0.1 0.001024495 0.0001
VxV (cm/s) 0.0001 0.1 0.001024495 0.0001
VyV (cm/s) 700 15 1.1000000001 0.0001

DA(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

DT (cm2/s) 3 ∗ 10(−6) 10(−2) 0.000344 0.000444

DV(cm2/s) 3 ∗ 10(−7) 10(−3) 0.0003344 0.000444

Table 7.4: Input data

The following figures refer to the reconstruction of biological parameters for real PET-data:

Figure 7.81: Reconstruction of k1 Figure 7.82: Reconstruction of k2

Figure 7.83: Reconstruction of VxA Figure 7.84: Reconstruction of VyA
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Figure 7.85: Reconstruction of VxT Figure 7.86: Reconstruction of VyT

Figure 7.87: Reconstruction of VxV Figure 7.88: Reconstruction of VyV

Figure 7.89: Reconstruction of DxA Figure 7.90: Reconstruction of DxT

And the radioactive concentrations in tissue, vein and u:
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Figure 7.91: Reconstruction of CT − t3 Figure 7.92: Reconstruction of CT − t6

Figure 7.93: Reconstruction of CT − t9 Figure 7.94: Reconstruction of CT − t12

Figure 7.95: Reconstruction of CV − t3 Figure 7.96: Reconstruction of CV − t6
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Figure 7.97: Reconstruction of CV − t9 Figure 7.98: Reconstruction of CV − t12

Figure 7.99: Reconstruction of CV − t15 Figure 7.100: Reconstruction of u− t2

Figure 7.101: Reconstruction of u− t12 Figure 7.102: Reconstruction of u− t18

As we can see, the fact that k1 and k2 are equal to zero exactly in the center is reflected in the

graphics that represent the radioactive concentrations in tissue and vein, which remains zero in the

same place.
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