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Abstract

PET is an imaging technique applied in nuclear medicine able to produce images of physiological
processes in 2D or 3D. The use of ®F-FDG PET is now a widely established method to quantify
tumour metabolism, but other investigations based on different tracers are still far from clinical use,
although they offer great opportunities such as radioactive water as a marker of cardiac perfusion.
A major obstacle is the need for dynamic image reconstruction from low quality data, which applies

in particular for tracers with fast decay like H2%O.

Here we present a model-based approach to overcome those difficulties. We derive a set of differential
equations able to represent the kinetic behavior of Hi®O PET tracers during cardiac perfusion.
In this model one takes into account the exchange of materials between artery, tissue and vein
which predicts the tracer activity if the reaction rates, velocities, and diffusion coefficients are
known. We then interpretes, the computation of these distributed parameters as a nonlinear inverse
problem, which we solve using variational regularization approaches. For the minimization we use

the gradient-based methods and Forward-Backward Splitting.

The main advantage of this approach is the reduction of the degrees of freedom, which makes the
problem overdetermined and thus allows to proceed to low quality data. Instead of reconstructing
the 4D tracer activity distribution (in space and time) we identify a set of 3D parameters (spatially

dependent only).

The major contribution of this work in relation to similar studies in the literature is that the
differential equations model proposed here involves not only the portions of exchange of materials,
but also we take into account the contributions due to diffusion and transport portions, making the

proposed model more complex and thus more realistic.



Key words: Parameter Identification, Reaction, Diffusion, Transport, Inverse Problems, Imaging,
Image Processing, Poisson Noise, Forward-Backward Splitting, Identifiability, Dynamic Positron

Emission Tomography, Regularization Theory.
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Introduction

Inverse Problems are focus of current research interest in industrial applications (as the identifi-
cation of parameters in industrial processes) [37, 46, 55], applications to geophysics [64, 101],
tomography and medical sciences (detection of tumors and fractures) [12, 74, 81, 82]. They are
systems that, based on observed measurements, allow us to obtain information about a physical

object or system which we are interested in.

Here we will focus on the use of inverse problems involving image reconstruction. The reconstruction
of images has a significant impact in several areas of applied sciences, such as astronomy, microscopic
imaging and especially in medical imaging techniques have a high diagnostic value because they

allow the visualization of anatomical information and physiological effects.

The main objective of this thesis is the reconstruction of kinetic behavior of radioactive water Hi°O
during cardiac perfusion based on real PET-data. We want also formulate the parameter identifica-
tion problem associated with the inverse problem in question and solve it in order to reconstruct the
kinetic parameters that compose the model of differential equations (which represents the kinetic
behavior of H3®0) proposed in this work. The disadvantages arising from the short radioactive
half-life (for H3°0 = 2 min) are noise and low-resolution reconstructions. We present here the tools

which allow the reconstruction of biological parameters in question.

In the following section, we want to recall the basic motivations and the contributions of this thesis.

Finally, we provide a sketch of how this thesis is organized.
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Figure 1.1: Image of a typical positron emission Figure 1.2: Schema of a PET acquisition process.
tomography (PET). © Wikipedia © Wikipedia

1.1 Motivation

Positron Emission Tomography is an imaging technique applied in nuclear medicine able to produce
images of physiological process in 2D or 3D. In comparison to other imaging techniques with higher
spatial resolution, the major advantage of the PET procedure is the high sensitivity and ability
for quantitative measurement, making it possible to visualize and to examine specific physiological

effects inside the body.

Besides from being a minimally invasive examination and therefore causing less patient discomfort,
PET allows the development of better diagnostic imaging, detecting and monitoring the activity
of malignant tumors, as well as a better treatment of patients. Many methods to analyze PET
data have been developed based on compartmental models such as cerebral oxygen utilization [78],

neuroreceptor ligand binding [77] and the quantification of blood flow [2, 10, 11, 68, 70].

The procedure is simple and PET will be explained below. Usually glucose connected to a ra-
dioactive element is injected into the patient (normally into the blood circulation). The radioactive
tracer then spreads through the blood circulation and the regions that metabolize the excess of
glucose, such as tumors, are highlighted in the image created by the computer. Figure 1.1! shows

an example for a typical PET-scanner that produces data to process images.

The emission of positrons occurs when the radioactive tracer isotope decays. These positrons are
the antimatter counterparts of electrons. Thus, the electrons annihilate with positrons and produce

a pair of gamma photons that travel into opposite directions. The photons are detected during the

Lhttp://upload.wikimedia.org/wikipedia/commons/b/b8 /ECAT-Exact-HR-PET-Scanner.jpg
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PET-scan. Each pair of detectors defines a line along which the intensity of the annihilation is
measured. This intensities along lines can be described via line integrals and the data are stored

by a sinogram before the reconstruction. The process is schematically described in Figure 1.22.

With the given PET sinogram data f(6,y) the inverse problem of generating an image u(x) from

this data is to compute u from

f=¢&(Ku) (1.1)

where £ represents the Poisson statistics and K denotes the X-ray transform, defined by
Ku(f,x) = / u(z +th)dt, x+t0 CQ (1.2)
R
In the 2D case the X-Ray transform is equivalent to the more popular Radon Transform.

The biggest disadvantage of working with inverse problems is that the data f are corrupted by
noise, especially, because the problem is usually ill-posed in the sense of Hadamard [49]. One
problem is called well-posed if it satisfies the conditions of existence, uniqueness and continuous
dependence on data. If any of these requirements is not satisfied, the problem is called ill-posed.
This instability and ill-conditioning must be overcome if we want to solve the inverse problem
satisfactorily. This problem is also transferred to a nonlinear parameter identification problem
which we add regularization methods to each biological parameters (that we want to reconstruct)

independently and to transform the ill-posed problem in a well-posed.

A solution for this inverse problem is given via the minimization below

u € arg 151615121 { /Ku — flog(Ku)do(0,y) + aR(u)}
Q

=u € arg 11}1618 { /flog (I§u> + Ku — fdo(0,y)do(0,y) + aR(u)}
Q

where R is a regularization fuctional (gradient and a-priori regularization) and penalizes the devi-

ation from a ideal (smooth) solution w.

The solution of the minimization problem presented above as well as the calculation of all physi-
ological parameters involved in this process with application in medical science, more specifically

in positron emission tomography, is the biggest motivation of this thesis. Based on the statements

2http://upload.wikimedia.org/wikipedia/commons/c/cl /PET-schema.png
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above we summarize the contribuitions of this work in the following section.

1.2 Contributions

We propose in this thesis a set of differential equations to represent the kinetic behavior of PET-
data during cardiac perfusion. This model is flexible in the sense that one can consider only two

differential equations that take into account only the exchange of materials between artery and

tissue
88% = —(lo(x)+11(x))Calx, t) +13(x)Cy(x,t) + V- (Va(z)Ca(z, 1)) + V- (D4 (2)VCa(z,t)) (1.4)
a@% = —(lo(x)+12(2))Cr(z, t) +11 () Ca(z, t) + V- (VF(2)Cr (2, 1)) + V- (D7 () VCr (2, t)) (1.5)

Or even with the aid of a third equation, we can represent a more complex system involving artery,

tissue and vein:

88% = —(ko(x)+k1(2))Ca(z,t)+k3(2)Cp (2, t)+ V- (Va(x)Cs(2,1)+ V- (D4 (2)VCa(x,t)) (1.6)
83% = —(ko(z)+ka(2))OF(z,t)+k1 (2)Ca(z, t)+ V- (VI (2) O (2, 1))+ V- (D7 (2) VO (z,t)) (1.7)
% = —(ko(z) +k3(2))Cy(z,t) + k2 (2)Cr(2,8) + V- (Vi (2)Cy(,¢)) + V- (Dy(2)VCy(x,t)) (1.8)

Then we consider in this work the elaboration of the parameter identification problem that, by
solving a minimization problem, allows the reconstruction of a sequence of images and dynamic
parameters in positron emission tomography or fluorescence recovery after photobleaching (FRAP)

[23].

As a further contribution in this thesis, we present also the results of the computational simulation

of the equations that describe the model to real PET-data.

1.3 Organization of this Work

The Chapter 2 is designed to provide the mathematical tools needed in the course of this work. We
present here basic concepts of functional analysis and variational calculus, as also the definition of

ill-posed problems.
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In Chapter 3 we discuss the model proposed here, consisting of three differential equations, with
the objective to reconstruct kinetic behavior of radioactive water Hi°O during cardiac perfusion.
We also present a section devoted specifically to the existence and uniqueness of solution of the

problem.

In Chapter 4 we work on the parameter identification problem associated with the proposed model.
This section involves basic concepts of inverse problems, Expectation Maximization algorithms and

Regularization.

The Chapter 5 consists of a discussion about the identifiability of constant parameters in the system

described by the parabolic differential equations proposed here.

The Chapter 6 is intended for the numerical solution with a brief discussion involving the combina-
tion of EM-algorithm with the parameter identification problem to the resolution of the problem.
We also discuss how the discretization of the differential equations is made and also we discuss

methods used to solve the minimization problem.

Finally, in Chapter 7 we present the computational results with the reconstruction of all parameters
and of the image that represents the physiological process on synthetic and real data in positron

emission tomography.
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Mathematical Foundations

This chapter is designed to provide the basic mathematical tools needed in the course of this work.
Section 2.1, 2.2 consist of basic concepts of linear spaces (Banach, Hilbert and Sobolev Spaces) and
their properties. Below we approach some basic concepts about ill-posed problems. Therefore we
present questions involving Variational Calculus and Lebesgue Spaces with concepts widely used in

Chapter 5. Finally the last section is designed to Sobolev Space and their properties.

2.1 Banach Spaces
We present here some definitions involving the Banach and Hilbert Spaces and also dual spaces,
based on [51].

Definition 2.1.1 Let V' be a (real or complex) vector space. A norm on V is a real - valued

function, written ||z|| such that
1.) ||z|| > 0 for allz € V and ||z|| = 0 implies x = 0.
2.) |laz|| = |a|||z]|| for all scalar o and vector x.
3.) |z +yl|| < ||lz|| + ||ly|| (triangle inequality).
A wvector space with a norm is called a normed space.
Definition 2.1.2 A Banach space is a complete, normed linear space.

Definition 2.1.3 If a normed real vector space X is complete, it is called (real) Banach space, i.e,
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if any Cauchy sequence (xy)nen has a limit x € X, more specifically if

lm ||Zm — zn]lx =0
m,n—o00

holds, then exists a function x € X with lim,_, ||z, — z||x = 0.

Definition 2.1.4 Let K(X,Y) be the space of all linear operators M : X — Y that are bounded in

the sense that

IM||xy = sup [[Mz][y < oo (2.1
‘ :El X:l
holds. The space K(X,Y) is a normed space with operator norm || - ||x.y.

Theorem 2.1.5 If Y is a Banach space then K(X,)) is a Banach space.

2.1.1 Dual Spaces

The dual space of a linear space consists of the scalar-valued linear maps on the space. Duality

methods play a crucial role in many parts of analysis.

Definition 2.1.6 (Dual Space) Let X be a Banach space. The space X* : K(X,R) bounded of
linear functionals on X s called dual space of X. Due to Theorem 2.1.5 we know that X* is a

Banach space equipped with the operator norm

x
bl = suwp @) = swp PN s o)) (2.2)
||| x=1 zex\{0} ||| x ||| x <1
for p(x) defined as the fuctional dual product
(P, @)y 0 = () (2.3)

We are going to write (p, x) 5 respectively (p,x) y. instead of (p, ) v 5 for simplicity.

Definition 2.1.7 (Dual Operator) Let X and Y be a Banach spaces. For an operator M € K(X,))

the dual or adjoint operator M* € K(X*,YV*) is defined via the relation

(M*y,x), = (y,Mx)y (2.4)

for ally € Y* and x € X. Furthemore, it is easy to see that ||M*|

y.x+ = ||M||x,y is satified.
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2.2 Hilbert Spaces

Hilbert spaces play a fundamental role in various areas of mathematics. Below we present the

properties to define those:

Definition 2.2.1 (Inner Products) A wvector space H is called inner product space if for every x,

y € X there exists a complex number (x,y), called the inner product of x and y, such that:
a) (x,x) is real and {(x,z) >0

b) (z,x) =0 if and only if =0

¢) (y,x) = (z,y)
d) (a1 +br2,y) = a(z1,y) + b (22,y)

Each inner product determines a norm by the formula ||z|| = {(x, x>% and every inner product space
is a normed linear space. The Cauchy-Schwarz inequality states that | (z,y) | < ||z||||ly|| for every

x, y € H. Thus, a Hilbert space is a Banach space equipped with a inner product {-,-).

Let H', L? be Hilbert spaces. We identify L? with it is dual L=2. If H~! denotes the dual of H!
(with norm || ||«) we have

H'— [?— H™! (2.5)

each space being dense in the following ( < denotes continuous embedding).

2.3 Ill-posed problems

In Chapter 4 we present the whole process necessary for the reconstruction of parameters to the
problem discussed in Chapter 3. There is the use of the concept of inverse problems, which has

many applications in various areas, including imaging sciences.

The greatest obstacle in working with inverse problems is that, the mostly are ill-posed problems.

Below follows the definition of ill-posed problems [48]:

Definition 2.3.1 Let £ and M be normed spaces and D : L — M a operator. The problem of
finding a solution f of

D(f)=g
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with g € M is called well-posed if
i) there exist a solution for all g € M,
i) the solution is unique,
iii) the solution f depends continuously on g.
The problem is called ill-posed, if it is not well-posed.

Whenever we seek to solve an inverse problem, one has to overcome obstacles such as instability
and ill-posedness. The strategy of regularization is a tool that allows to obtain an approximate

solution.

2.4 Variational Calculus

In this section we present a brief summary of Variational Calculus [36], which is the basis for the

understanding of the resolution of the optimization problem presented in Chapter 4.

Definition 2.4.1 Let P : (X,71) — (V,72) be a mapping from a Banach spaces X with topology
71 to a Banach space Y with topology to. Then P is called an operator. If Y - as a special case of

a Banach space - is a field, P is called a functional.

Definition 2.4.2 A functional P is called proper, with P : X — R U {0}, if the effective domain
dom(P) :={x € X/P(z) < oo}

18 mot empty.

Definition 2.4.3 Let P : X — Y be a functional or operator. The directional derivative(also called

first variation) at position x € X in direction y € ) defined as

d,P(z) i lim L&+ W) = P@)
tl0 t

if that limit exists.

Definition 2.4.4 Let P: X — ) be a functional or an operator and let d,P(x) exist. The second
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directional derivative (also called second variation) at position x in direction w is defined as

dyP(x + tw) — d,P(x)

2 T
d, ., P(x) :== 1t1JI})1 ; (2.7)
if that limit exists.
Definition 2.4.5 Let P: X — Y be a functional or an operator. The set
dP(z) = {d,P(z) < ooly € U} (2.8)

is called Gateauz-derivative. P is called Gateauz-differentiable, if (2.8) is not empty.

Definition 2.4.6 Let P : X — Y be a functional or operator, X and )Y Banach spaces, and suppose

dyP(x) exists for all y € X. If there exists a continuous linear functional P'(x): X — Y such that
P'(z)y =d,P(x) Yye X (2.9)
and

|P(z +y) = P(x) - P'(z)y|ly
lyllx

— 0 for |lyllx — 0O (2.10)

holds, then P is called Frechét-differentiable in x and P’ is called Fréchet-derivative.

Definition 2.4.7 Let U be a Banach space with topology 7. The functional P : (U,7) = RU{+o0}

is called lower semi-continuous at x € U if

P(z) < lim inf P(xy) (2.11)

k—o0

for all xy, — x in the topology T.

Theorem 2.4.8 (Fundamental Theorem of Optimization) Let P : (U,7) — R U {400} be a func-
tional on a topological space U (locally convex) in the metric topology T lower semi-continuous.
Furthemore, let the level set

{x e U/P(z) < M} (2.12)

be non-empty and compact in the topology T for some M € R. Then there exists a global minimum
of

P(z) — min (2.13)
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Proof. Let P = inf,cy P(x). Then a sequence (z)ren exists with P(zy) — P for k — co. For
k sufficiently large, P(xr) < M holds and hence, (xj)ren is contained in a compact set. As a
consequence, a subsequence (zy);en exists with zp, — &, for [ — oo, for some & € Y. From the

lower semicontinuity of P we obtain

P<P(z)< Jiminf P(x) < P. (2.14)
—00

Consequently Z is a global minimizer.

Definition 2.4.9 Let X be a Banach space, with X* denoting its dual space. Then the weak
topology is defined as

T = xS (Y, k) » = (Y, T) 4 (2.15)
for all y € X* and the weak-*topologies are defined as
Y =" Y2 Wk @)y = (Y T) o (2.16)
forallx € X.
Theorem 2.4.10 (Banach-Alaogu) Let X be a Banach space with dual space X*. Then the set

{y e X*|llyllx- < C} (2.17)

for C' >0, is compact in the weak-*topology.

2.5 Lebesgue Measure

In this section we rewiew some of the basic aspects of measure, integration and tools that will be of
major interest throughout this work. First we want to recall the fundamental notion of a o-algebra

of sets. All definitions and concepts presented here are based on the introduction of [51].

Definition 2.5.1 A o-algebra of subsets of a set X 1is, by definition, a collection B of subsets of

X, which satisfies the following requirements:
(a) X € B;

(b) Ae€B — A° € B, where A° = X — A denotes the complement of the set A; and
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(C) {An}%o:1 Cc®B= Un A” €A
A measurable space is a pair (X,B) consisting of a set X and a o-algebra B of subsets of X.

Thus, a o-algebra is nothing but a collection of sets which contains the whole space and is closed

under the formation of complements and countable unions.

Definition 2.5.2 If (X;,B;), i = 1,2, are measurable spaces, then a function f : X1 — Xo is said

to be measurable if f~1(A) € B1VA € Bs.

Definition 2.5.3 Let (X,B) be a measurable space. A measure on (X,B) is a function p: B —

[0, 00] with the following two properties:
(i) The empty set has measure zero, u(P) = 0; and

(ii) p is countable additive - i.e., if E =[], Ey is a sequence of pairwise disjoint sets and a

countable “measurable’ partition, meaning that E, E,, € BVn, then p(E) = > W(Ey).

A measure space is a triple (X, B, u), consisting of a measurable space together with a measure

defined on it.
A measure y is said to be finite if u(X) < oo (resp., u(X) =1).

Theorem 2.5.4 There exists the o-algebra B, of Lebesgue measurable sets on R™ and the Lebesgue-

measure [ : B, — [0,00] with properties:
(a) B, contain all open sets (and also, all closed sets),
(b) w is a measure on B,
(c) if B is any ball in R™, then we obtain u(B) = |B|, with |B| denoting the volume of the ball,

(d) if A C B is valid, with B € B,, and u(B) = 0, then it follows that A € B,, and u(A) =0

hold, which means that (R™,B,,, 1) is a complete measure space.
The sets A € B,, are Lebesgue measurable.

Definition 2.5.5 (Lebesgue Measurable Function) The function u : R™ — [—o0,00] is called
Lebesgue measurable if we have

{zx e R": f(z) > a} € B, (2.18)
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for all « € R. If we furthemore have A € B, the function f : A — [—00,00] is called Lebesgue
measurable on A if f} is Lebesque measurable, with 14 denothing the indicator function (f} = f

on A and f} =0 otherwise).

Lemma 2.5.6 For any sequence (uy) of Lebesque measurable functions

® sup; uy

e infy ug

o limsupy_, . Uk

liminfy_, o ug

are also Lebesgue functions. Furthermore, for any Lebesgue measurable function u > 0 there exists

a monotone increasing sequence (ug)gen C E+(R™) with u = supy, ug.

Definition 2.5.7 (Lebesque Integral) Let (X, p) be a measure space. The Lebesgue Integral, over

X, of a measurable simple function ¢ : X — [0,00] is defined as

/cpdu = /Zak [1(EDdn =" axp(Ey) (2.19)
i k=1
we restrict ¢ to be non-negative, to avoid having to deal with co — 0o on the righthand side.

Lemma 2.5.8 (Linearity of Integral for Simple Functions) The Lebesgque integral for a simple

function is linear.

Definition 2.5.9 (Integral of non-negative function) Let f : X — [0,00] be a mesurable and non-

negative. The Lebesque integral of f over X is given by

[ fdn=sup? [ ednfpsimple0 << 1t (2.20)
X X

and [ pdp defined in Definition 2.5.7.
X

Definition 2.5.10 (Lebesque Spaces LP) Let (X, B, 1) be a measure space and 1 < p < oco. The

space LP(X) consists of equivalence classes of measurable functions f : X — R such that

LP(Q) :={f : Q@ = R Lebesgue measurable |||f||1») < 0o} (2.21)
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The LP-norm of f € LP(X) is defined by

Al Le @) = (/Ifl”du>p (2.22)

The notation LP(X) assumes that the measure p on X is understood. We say that f,, — f in LP
if If — falloe — 0. The reason to regard functions that are equal a.e. as equivalent is so that

If]lze = O implies that f = 0.

Definition 2.5.11 Let L

loc

(Q) be the locally Lebesgue integrable functions such that

LP

loc

(Q):={f:Q—= R Lebesgue measurable |f € LP(V) for all ¥ C Q compact}.  (2.23)

2.6 Sobolev Spaces

Taking into account the considerations made above we present here definitions corresponding to

the Sobolev Space.

Definition 2.6.1 (Weak Derivative) Let @ C R™ be open and let f € L} (Q) be locally L inte-

loc

grable. If there exists a function w € L}  such that

loc

/wgpd:z: = (—1)l /fDagodz (2.24)

Q Q

holds, for all p € C§°(Q), then w is called the a-th weak partial derivative of f.
To easily identify the weak derivative w of f with f we denote w by D¢ f, for the sake of simplicity.

Definition 2.6.2 Let Q2 C R™ be open. For k € Ny and p € [1,00] the Sobolev space W*P(Q) is

defined as
WFP(Q) = {f € LP(Q)| f has weak derivatives D*f € LP(Q) for all |a| <k} (2.25)

The Sobolev spaces are equipped with the norm

fllweoiy = [ 3 1D A1 0 (2.26)
|| <K
for p € [1,00[, and
I fllwee@) = >_ 11D fllze(o (2.27)

|| <k
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Compartmental Models

In nuclear medicine and more specifically PET modeling it becomes important to allow quantitative
analysis in the interpretation of experimental data, providing information on measurable and not

measurable quantities [24].

Compartmental models are a classical approach in the estimation of metabolic rates. They are
able to describe fairly well a large number of physiological processes such as brain and heart. In
a PET image-sequence, fixed spatial compartments are areas defined by the concentration of a
radioactive tracer that is a a temporal function. The images obtained by PET are formed by
numerous overlapping signals. So we need to use a mathematical model, which includes all possible
states of that signal given by a sequence of PET-reconstruction, in order to isolate the desired

component. Each of these states is treated as a compartment [105].

As a way of describing the interaction between these compartments one associates one constant
capable to represent the velocity of absorption, diffusion of the radioactive trace used during the
PET scan. Thus data concerning the rate at which radioactive trace is metabolized in the region of
interest can be associated with rates of variation in the time of the radioactive tracer concentrations
in each compartment [24]. The rate of transit of substances between the regions are represented

through a dynamic constant that links these compartments.

Thus it becomes possible to describe the kinetics of a radioactive tracer in a physiological system
making use of a set of differential equations whose solutions are not linear with respect to parameters
of interest. Omne just has to analyze the variation of the temporal concentration of a radioactive

tracer in a specific compartment and thus determine the quantities of interest.
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The kinetics of radioactive tracers used with positron emission tomography [39, 84] provide exam-
ples, which are modelled by compartmental schemes. The kinetics of [*®F] -fluorodeoxyglucose
(FDG), ['3N] -ammonia and H3°0 are typical radioactive tracers used to examine regions of in-
terest, being the last two more used to estimate regional myocardial blood perfusion. In [80] a
two-compartmental model and in [67, 66] a three-compartmental model are applied to the analysis

of myocardial PET images.

In the following we want to present the model of parabolic differential equations that describes the
kinetic behavior of Hi?O PET tracers during cardiac perfusion, the existence and the uniqueness

of the solution of the differential equations problem and the continuity theorem.

3.1 Differential Equations for H1°0O PET Tracers

Let Q C R, for d appropriate, bounded, compact space that denotes the compartmental space, i.e.,
an element x € ) denotes a compartment. Furthermore ¢ € [0,7) C R lies within a bounded and
compact set. Since V4, Vy,Vy, D4, Dy, Dy and k;, (i = 1,2,3) are functions in space, depending

on a compartment x, we have

Ca, Oy, O - Dy(Ca, Cy, Cr) % Ly([0,T)) — L, (2 x [0,T])?, with

% = —k()(x)CA(CU,t)—kl(x)CA(m7t)-i—kg(m)Cv(:r,t)—i—V . (VA(x)CA(%t)) +V- (DA(CU)VCA(x,t))
Transport Dif fusion
(3.1)
a@% = —ko(z)Cr(,t)+ki(x)Ca(x,t) ko (2)Cr (2, )+ V- (Vi (2)Cr (2, ) + V- (D7 (2) VO (2, 1))
(3.2)
aa% = —ko(x)Cy(z,t) —ks(x)Cy(x, t) + ko (x)Cr(x,t) + V- (Vo (2)Cy(z,t)) + V- (Dy(2)VCy(z, 1))
(3.3)
and

D, := {k; € L*(Q),Vayy,1 € L=(Q), D ayv/7 € L®(Q),k > 0,D > 0} (3.4)
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subject to the boundary conditions

(DVCay7/v +VCairyv) -n=jin T COQ Jin = const -V
(3.5)
(DVCayrpy +VCasrv) - n=CasrppVour 092/

The blood in an artery, transporting a radioactive tracer is described via a function Cy(x,t).

Similarly, the blood containing the radioactive tracer in a tissue and in a vein are described by

Cr(x,t) and Cy(z,t) respectively and const is a constant.

This model differs from others currently found in the literature because here we also consider
the contributions due to diffusion and transport. For these contributions, D4, Dy, Dy are the
parameters of diffusion and V4, V-, V3, are the velocity parameters in the arteries, tissue and veins
respectively. All these parameters are only functions of spatial coordinates, independent of time.
The terms ko(z)Ca(x,t), ko(z)Cr(z,t) and ko(x)Cy(x,t) represent the radioactive decay of the
compound. And finally the rates k1, ko and k3 represents the exchange of fluids between the artery,

tissue and vein.

The parameters D4, Dy, D1, k; and C 4, Cy,C7 are non negative, C 4, Cy,Cy due as a density,

k1, ko and k3 because of physiology and D 4, Dy, D7 because they are diffusion parameters.

3.1.1 Preliminary Considerations

In order to prove the uniqueness of the solution of the problem mentioned above, let D(A) be a

subspace of H'. Thus we have

aC
St Ca
9 | =—A| ¢y | i (HH? (3.6)
o cr

where

+(ko + k1) = V(Va(-)) = V(DAV()) —ks 0
A= 0 +(ko + ks) — V(Vv () — V(Dv V() —ka
—ky 0 +(ko + k2) — V(Vr () = V(DTV())

Definition 3.1.1 Let a,b € R = RU {—o00,+00}. We denote by W (a,b; H', H=1) the space

Wa,b; H', H ') = {u € L*(0,T; H)* n H' (0, T; H*)?} (3.7)

The problem is then to find u = (C4(z,t), Cy(z,t), Cy(z,t)), with

u(t) € W(a,b; H', H™1) (3.8)
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and
Opu = —Au, (3.9)
u(0) = ug (3.10)
A satisfies:
< Au,v > < 61Hu||(H1)3~||1}||(H1)3, (311)

which is easily verified by Cauchy-Schwarz, and
< Au,u> > 62||u\|(2H1)3 - 63||UH(2L2)3 (3.12)

It follows that, for each ¢ € [0, T, the bilinear form a(¢; u,v) = Au defines a continuous operator A
from H' — H~! with
sup ||Allg(mr -1y < M (3.13)

te(0,T

Definition 3.1.2 Let {H} }men+ be a family of finite dimensional vector spaces satisfying:

{ O)HL c H' (dim H} < +00) (314)

ii)H} — Hlwhen m — oo in the following sense:

there exists U a dense subspace of H', such that, for all v € B, we can find a sequence {vy, fmen-
such that, for all m,v,, € H}, and v,, — v in H' as m — oo. The space H}, is called the Galerkin

approzimation or order m (m # dim H} ) of H'.

3.1.2 TUniqueness of the Solution of Problem

The proof of uniqueness and the existence of the solution of problem are mainly based on the work
of Dautray [32].

Theorem 3.1.3 (Uniqueness) Suppose that Au satisfies (3.11) and (3.12), ug € L?. Then the

solution of problem (3.9), if it exists, is unique.

Proof. We consider u; and ug to be two distinct solutions of problem (3.9), then v = u; — us
satisfies u € W(a,b; H', H=1) and

Ou—V-(Vu+DVu)+ Ku=0
(DVu+Vu) -n=j, I CoQ (3.15)
(DVu+Vu) n=uve QT

with
(ko + k1) —ks 0
K= 0 (k‘() + kg) —ko
ky 0 (ko+ ko)
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Then by multiplying by the directional derivative and integrating:

/atucp do—/V-(Vu—i—DVu)go do+/Ku<p do=0
Q Q Q

/8tugo do — —/(Vu+DVu)Vga da+/(Vu+DVu)~n<p do +/Kug0 do=0 (3.16)
Q Q o) Q

/@wp da+/(Vu+DVu)V<p do — /jmga do + / UVt do +/Ku<p do=0
Q Q

Q r Q)T
Let
—O(u, ) = /DVUV@ d0+/Vu~V<p da—i—/Kwp do — / UVoutp do (3.17)
Q Q Q Q)T
Thus
1d 9 ,
5@\“@” —O(u,p) = /]m@ do (3.18)
r

For uniqueness, it satisfies to consider j;,, = 0
(p,v) = /jmcp do=0 (3.19)
r

and by Gronwall’s Lemma and ¢ = u we have

5o lu®) = O(u,) 520)

< 03|u|%L2)3 - 02\u|%H1)3 < CS|“|?L2)3

And we have uniqueness in problem (3.9).

3.1.3 Existence of a Solution of Problem

Theorem 3.1.4 Under the hypothesis of Theorem (3.1.3), there exists a solution of problem (3.9)
and
weW(,T; H H™ 1)

Approximate Problem

Let {H} },.en- be a family of finite dimensional vector subspaces satisfiying (3.14), H' being dense
in L2, for ug € L?, there exists a sequence {ug,, }men+ such that

VYm, ugm, € (HL)? and  wugn —ug in  (L?)3 (3.21)

Let be
dm =dim HY, {W;,} j=1,..,d, abasisof H. (3.22)
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Thus, our problem is to find
dm
)= gim®)W; (3.23)
j=1
satisfying
T T
//@um( YWimdodt — //V (Vtm (t) + DVup () Wimdodt
0 Q 0 Q
T (3.24)
—i—//Kum Wimdodt =0 1<j<dp,
0 Q
Um (0) = uom,
Lemma 3.1.5 There exists a unique solution u,, to problem (3.24) satisfying:
U € L2(0,T; HY> N HY(0,T; H,,')? (3.25)
A priori estimates
We multiply equation (3.24) by g;m(t) and we sum from 1 to d,,; it becomes
L d T T
ECT// [t (t) Pdodt — //v (Vi (t) + DV, () )t (t)dodt
0 0
T (3.26)
+//Kum(t)um(t)dadt: 0
0 Q
and, by integration over ]0, T[:
T T
//8tum Y, (t)dodt + // Vi (t) + DV, () Vu, (t)dodt
0
" (3.27)
//]mum dadt+/ / U (E)Vouttm (t)dodt —i—//Kum(t)um(t)dodt:O
0 0Q/T 0 Q
by (3.12), we have
) T
§|um(t)|2 — O(Up, Um) =+ //jmum t)dodt |u0m\ (3.28)
0T
1 1
a um(t) 2= @(umaum) + 7|u0m 2
g 1) y 1o (3.29)

< —calum| (B + eslluml[fz2)s + Cluol?

with t € [0,T], C a suitable constant, independent of ¢, m. From which we have

Lemma 3.1.6 The functions u,, solutions of our problem (3.9) belong to a bounded set of L°°(L?)3

and of L*(H')3.
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Passage to the limit for m —

From Lemma (3.1.6) and from (3.13), we can deduce that
A(-)ty, € a bounded set of L?(H')3 (3.30)

By using the properties of weak (or weak star) compactness of unit balls of the spaces
L?(H'), L>°(L?), L?(H~ ') we deduce

Lemma 3.1.7 We can extract from the sequence {um }men-a subsequence {u,,} having the follow-

ing properties:

i) u,, —u weakly in L*(H')3
i) wu,, —u weakly *in L>(L?*)3
iii) A()um — A()u  weakly in  L?*(H~1)3

Let then ¢ € ©(]0,7[) and v € U.

From (3.14)(ii), there exists {vy }men+, vm € H},, such that v,, — v strongly in H'. Therefore,
let be

m = m i. m t) = t m
U =@ @um  LePp(t) = p(t)v (331)
Yp=pRu
and, particularly,
i) Yy — 1P in L2(0 T; I‘[l)‘q’7 strongly, m — oo
3.32
i), — % — ' in L?(0,T;L?)? strongly, m’ — +o0 ( )
From (3.24), we have
T
//&eum dodt—l—// Vil (t) + DV Uy (1)) Vo () dodt
0 Q
N T
/ / Jintom (£)dodt & / / U () Vourthm (t)dordt | + / / Kty () (t)dordt = 0
0 0 oQ/T 0 Q
VYm = pQuny, Vpe @(]O,TD
(3.33)

from (ii) of Lemma (3.1.7) and (3.32) (i)

T

//atum/ (t)dodt = /T/atu(t)d/(t)dodt as m’ — oo (3.34)
00

0
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And, from (iii) of Lemma (3.1.7) and (3.32)(i)

+

—=

/V-Wmﬂﬂ+DV%Am%W@wﬁ
Q

/—\O

0 0

Il
Ot~

/ — Aty (1), Yy dt
r

T

-+ /V (Vu(t) + DVu(t))y(t)dodt
Q

T
(/ Jin®(t) dadt—l—// t)Voutth(t dadt) +//Ku t)dodt
0 0 Q

0

@0\

as m' — oo
Thus we can pass to the limit in (3.33) and then we have

T T

/ wa+//v v) + DV (u(t), 0))p(t)dodt
0 Q 0
T
(/ Jin(u dodt—l—/ / V)Voutp(t)dodt
0 0 8Q/T
T
+/ K(u t)dodt =0 Yo €Q and Ve e D(0,T]).
0 Q

Since U is dense in H', (3.36) remains true for all v € H' if we shown that u satisfies (3.9).

u is the solution of (3.9)

T T
/ Jin®Om: (t dadt—|—//um VoutWme (t dadt) —|—//Kum/ t)dodt

(3.35)

(3.36)

First we have to show that u is the solution of problem (3.9), it remains to show that (3.8) and

(3.10) are satisfied. For equation (3.8): Considering the equation (3.36), we have

T T

// Bdodt = //v v) + DV (u(t), 0))p(t)dodt

T

(=)
(=)

oQ/T

p(t)dodt

/ K(u t)dodt
/ A

T
+ (/ Jzn dUdt‘i‘/ Uout(p( )dodt
0 0

(3.37)
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Since A(-)u(-) € L2(0,T; H-Y)3 N HY(0,T; H~1)3,

g=AMu e L*0,T;H)YnH"0,T; H )3
A A (3.38)
// t)dodt = //(g(t),v)cp(t)dadt Yo € HY, Vo€ D(]0,T))
0 0 Q
and, as seen in [32],
,_ du 2 1 —143
U*EEL(OTH YinHEY0,T;H ) (3.39)

and u(t) € W(H?) is a continuous function from [0,7] — L2

For equation (3.10): Let ¢ be a function of class € over [0,T], zero in a neighbourhood of T', with
©(0) # 0, with values in R.

Then ¢ = p @v, v € H' is in W(H') and by parts formula:

T

/ / V)dodt = / / Bdodt — (u(0), 1)0(0) (3.40)

0

From (3.9) and (3.39) we have

[ [ pwodsdt = [ [0+ DI(ule), o)) dodt
0 Q 0 Q
+ //jm(u(t),v)tpdodt—&—/ (u(t), v)vourpdodt (3.41)
0T 0 aqyT
—//K(u(t) Yo (t)dordt
0 Q
And from (3.24), we deduce
T
/ / (L (£), v o (E)dorlt = / / v. )+ DV (e (1), 0 ) (£ dordt
0 Q Q

T
+ (//]m U (), U )p(t) dadt+/ / U (), Vs VVourp(t)dodt (3.42)
0

0 T
T

//Kum (), v Yo (£ dordt

0 Q

T T
// Uy (), O ) dadt:// Uy (1), Ve )@ () dodt — (woms, Vs )p(0) (3.43)
0 Q 0 Q
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If we pass to the limit in (3.42) and (3.43) as m’ — oo we obtain

i /T / (Wl (8), o o () dordt = — /T / V- (V(u(t), v) + DV (u(t), v))p(t)dodt
Q 0 Q
+ (/T/]m( (t),v dadtJr/ / V) Voutp(t)dodt
0T 0 aQ/T

(3.44)

ml’linoo// ), U )p(t)dodt = // t)dodt — (ug,v)p(0) (3.45)

From (3.40), (3.45) and (3.44):
(u(0),v) = (up,v) Vv e H* (3.46)
and H' being dense in L?, Vv € L?, we have
u(0) = ug (3.47)
Thus

Lemma 3.1.8 The function u is the solution of problem (3.9).

Now we need to write in the vector form of (3.24) in the approximate problem relative to the space
L2(0,T; H1)3.

Let H;' be the set of u € H~* such that (u,v) = 0 for all v € H}, and PH ' the projection in H~!

m

over H} | following H,1: if {Wj.m}j=11t0d, is an orthonormal basis in L? of H},, Pf,fil is given by:

d"n
P (u) = (u, @ m ) jm
j=1
Then (3.24) ist in the form:
du, -
e + P, A() m(:)=0 (3.48)

Let be the Galerkin approximation such that: (C) the family (PH '),cn is bounded in £(H1).
If the Galerkin approximation is constructed starting from a ortonormal basis in $) of elements in
H?!, then this condition above is always satisfied and (C) implies that such a basis is also a basis
in H! and in H~1. And the equation (3.30) implies:
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PH™" A(Yu,, € a bounded set of L2(H )3 (3.49)

And we deduce from (3.48) that the family

dup, . .
st is in a bounded set of L*(H~!)3
Lemma 3.1.9 The solution u,, of (3.48) remains in a bounded set of L>°(L?)3 and W (0,T; H', H~1).

We can extract a weakly convergent (to u) subsequence in W(H?!) from the preceding sequence

(and in L® weakly *), as a consequence of the weak compactness of the unit ball of W (H?).

From Theorem (3.1.3), the mapping u € W(H') — u(0) € (L?)? is continuous, we can to deduce
that w,,(0) tend towards u(0) weakly in (L?)3, therefore that the initial condition u(0) = ug is
satisfied.

Strong Convergence

One does not need here to extract a subsequence of u,,, because due to uniqueness of the solution

we have

Uy —u in L*(H'Y)? weakly and wu,, —*u in L>(L?)%® weakly * (3.50)

We now introduce

T
Xm(T) = %|um(T) —u(T)]* + //V c(V(um(t) — uw(t)) + DV (um (t) — u(t)))(um(t) — u(t))dodt

- ( /T / Gin (Um (t) — u(t)) (um (t) — u(t))dodt + /T / — u(t))Vout (Um (t) — u(t))dodt

QT

T
—i—//K (U (t) — u(t)) (um (t) — u(t))dodt
0 Q
(3.51)
From (3.29), u,,(T) remains bounded in (L?)? and we can extract {u,, } in Lemma (3.1.7) with
U (T) = Xy weakly in  (L?)? (3.52)

If we take ¢ € ©(]0,7]) null in a neighbourhood of 0, with ¢(T") # 0 and doing the same way as in
u(0) = up, we obtain
(u(T),v) = (X0,0), Vo e (H')?

from which we deduce
u(T) =X (3.53)

Taking (3.50), we have
U (T) — u(T)  weakly in (L?)3 (3.54)
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This set, X,,(T") can be written:

X (T) = 1|um T)? —I—//V « (Vum (t) + DVt (t))um (t)dodt

Q
T T
//]mum U (¢ detJr/ / m (6)Vouttm (t)dodt
0T 0 9Q/T
T
+ / Kty ()t (t)dodt + Yy (T)
0

Thanks to Lemma (3.1.7) and to (3.54), we have

. O/ F/ jm(tyu(t)dodt + 0/ / Wt vousu(t)dodt (3.55)

From (3.26), we deduce by integration from 0 to T:

T
%|um(T)\2+ / / V- (Vo (£) + DVt (6) Yy (t)dordlt
0 Q

T

T
//jmum dadt—|—/ / U () Vout U, () dordt
0

0 9Q/T
T

+//Kum t)dodt = |u0m\2

0

from which

T
lim f|um (T)|? +//V - (Vum (t) + DVt (1)) um (t)dodt

m—o00 2
Q
T T
//jmum dodt+/ / (t)Vouttim (t)dodt (3.56)
0 0 9Q/T

T

+//Kum t)dodt = |u0|2

0
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But from equation (3.9)

=L
2
T
— //jmu dcrdtJr/ / t)voyru(t)dodt (3.57)
0T

0 aQ/T

Thus (3.55), (3.56) and (3.57) imply

lim_ X,,(T) =0 (3.58)
Since from (3.12), we have
T
0<a / / tm (£) — u(t)||2dodt < Xon(T) (3.59)
0 Q

we deduce from (3.58) and (3.59).
Proposition 3.1.10 When m — oo, we have u,, — u strongly in L*(H')3.

The equation (3.58) implies that u,, (T') — u(T) strongly in (L?)3. More generally
YVt €[0,T], wn(t) — u(t) strongly in (L?)3. (3.60)
For this, it is sufficient to remark that for ¢ty €]0, T/ fixed, L?(0,to; H')? identifies with a subspace

of L2(H')3. Then all v € L?(H')? define, by restriction to ]0, o[, an element of L?(0,to, H')3 and
(3.60) results from:

Xon(to) = glum(t0) — uto)

T
+ //V - (V(um(o) — u(o)) + DV (um (o) — u(0))(tum (o) — u(o))dodt

0 Q
T
- ( / / Jin(tm(0) — w(0)) (i (0) — (o)) dordt
) (3.61)

(U (0) — u(0))Vout (Um () — u(o))dodt
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3.1.4 Continuity Theorem

Considering the variational formulation of the problem, the uniqueness of the solution and the
existence of the solution previously presented, we want to enunciate the following theorem in order

to evaluate the continuity of the solution with respect to the data.
Suppose that the equation (3.12) holds.

Theorem 3.1.11 Let ug and ul € L*(0,T; H-1)3NH(0,T; H~1)3 and let u and u* be the corres-
ponding solutions of problem (8.9), then

[lu —w*|| oo (r2) < c3lug — ug| (3.62)
* 1 *
[lu —u ||L2(H1) < E‘UO — ug (3.63)

Proof. Set w = u — u*, w(0) = up — u. Then w satisfies

we W(,T; H' ,H™)
T

T T
O/Q/('?t(w(t),v)dadt = O/h/v - (Vw(t) + DVw(t))vdodt — O/h/(Kw(t))vdUdt € 9(]0,7T)

w(0) = up — ug
(3.64)

and we have

t

%|w(7§)|2 - //V - (Vw(o) + DVw(o))w(o)dodt —l—//(Kw(U))w(o)det = %\w(0)|2 (3.65)
0 Q

0 Q
As for the a priori estimates, we obtain:
1 2 2 2 1 2

and we have (3.62) and (3.63).
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Parameter identification problems are often used in research in applied sciences. For example, the
identification of parameters in mathematical models is the key to describe biological systems. Some
works take into account a special type of a non-linear function estimator, called sigmoidal networks
for estimation of the parameters of compartmental models for neural network analysis [43, 99]. An
adjoint method for performing automatic parameter identification on differential equation based

models with application to protein regulatory networks can be find in [86].

The identification of parameters in tracer kinetic models has also increasing importance in medical
areas. Our emphasis in this work is into one of the most important applications in clinical and
research PET: myocardial perfusion imaging. The radioactive tracer measured with PET can be
put in relation with the physiological process by identifying a model describing the kinetics of the
tracer in the system [84]. The tracers most commonly used to examine the myocardial region
in examinations PET are '3 N-ammonia [26, 41, 98] and H3°O [2, 10, 53, 62, 68]. A general

literature on parameter identification can be found in [5, 54, 55, 30, 38].

Even after the parameters are identified, it is important to make an analysis of the results, since
there are several factors that can influence their quality. As sources of uncertainty we can find
the low sensitivity of parameters and measured values, the model adopted to represent the object
of study (since the parameters are valid only for the model adopted) and the imprecision of the

measured values, either read errors or imprecision of the instrument used.

It is therefore required an evaluation of the model by synthesizing data, which by Ljung [72],

depends on the following aspects:

e degree of agreement between the values of experimentally obtained data and the values ob-

tained with the utilization of the model in question;
e usefulness of the intended purpose of the model in real cases;
e capacity of the model in describing the real system.

The second point above is the interesting from a practical viewpoint. The usefulness of the proposed
model is verified if, using a particular model, the estimated physiological parameters help the
medical diagnose a satisfactory manner. The evaluation of the parameters estimated for the problem

addressed here is done in Chapter 7.
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In this chapter we present the parameter identification problem associated with the model proposed

here but first we will make a short introduction involving the definition of inverse problems.

4.1 Inverse Problems

Inverse problems constitute a very interesting class of problems involving knowledge in various areas
of mathematics and has many applications in many other sciences, including the reconstruction of

images using PET.

For our case, in particular, given PET-sinogram data the inverse problem of generating an image

u(z) from this data is to compute u from

§(Ku) = f (4.1)

where £ represents Poisson statistics of the data and K denotes the Radon Transform, defined by
(Ku)(0, s) = / w(z)da. (4.2)
z-0

The maximum likelihood estimate is given by

u € argineigzl { /Kuflog(Ku)do(@,y)} =u € argzneig { /flog ([gu>+Kufd0(9, y)do (0, y)}
Q Q

(4.3)
Thus calculating the partial Fréchet-derivative of the associated Lagrange functional and setting

then to zero, yields the optimality condition

f
K'1-K"(—=— | =0, 4.4
(£ (1.4)
where 1 denotes the constant function taking only the value one and K* is the adjoint operator of

K. Therefore the solution to the above equation can be obtained by the EM-algorithm presented

_ouk S
uk+1—K*1K (Kuk) (45)

in the next section.

But instead of solving an inverse problem and calculating the parameters directly to u, we will
compute the parameters as an inverse problem involving the inversion of a non-linear operator G
(which produces a sequence of images u(x,t)) for physiological parameters p as follows with more

explanations in the next section.
Thus, we want to reconstruct the image u subject to u(z,t) = G(p(x)) such that

u(z,t) = Cr(x,t) + Cy(z,t) + Cy(x,t) (4.6)
where the vector p contain all non-negative parameters

p = (k1(2), k2(2), ks(x), D7 (x), Da(x), Dy (), V7 (z), Va(z), W (z)) (4.7)
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4.2 Variational Model

Let G correspond to the conditions cited above. The variational problem for the calculation of
the parameters can be written as an optimization problem with appropriate added regularization
(R(p)) as follows

IM(u) 4+ R(p) = min subject to wu(x,t) = G(p) (4.8)
P
with IM representing the image reconstruction process.

Considering the EM-functional (presented in the next Section) and writing the problem as time-

dependent data, we have

T
//(Ku — flog(Ku)) + R(p) — mpin7 subject to u = G(p). (4.9)
0 Q

Making the calculation of the partial Fréchet-derivatives of the associate Lagrange functional and

setting them to zero [6], we obtain

():%E(u,p;q):K*lfK* (Igu> —q (4.10)
0= 5 Lluspia) =R (p) + G(9)'s (4.11)
0= 2 Lupia) = G) —u (4.12)

dq
with G(p) being positive. Multiplying the first equation with u, we have

0=us—uK" (Iét) — ugq (4.13)
G'(p)'qa=—-R'(p) (4.14)

with u = G(p) and s := K*1.

As seen in [90] we can write the minimization problem (with a convex function) as follows
min{l = KL(f, Ku) + R(p)|G(p) = u}

(4.15)
= min{ KL(f, F(p)) + R(p)}

where K L(f, Ku) denotes the Kullback-Leibler (KL) functional defined below.

Definition 4.2.1 (Kullback-Leibler Functional) The Kullback-Leibler functional is a function KL :
L2(2) x L*(Q) — RsoU{+o0} with Q C R™ bounded and measurable, given by

KL(p, ) = /Q <<plog <i) ot w) 9 Y o, > Oae. (4.16)

where ¥ is a measure. Note that, using the convention 0log0 = 0. the integrand in (4.16) is
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nonnegative and vanishes if only if p = .

Lemma 4.2.2 (Properties of KL Functional) Let K satisfy Assumption (4.2.5) (i) and (ii). Then
the following statements hold:

(i) The function (p,¥) — KL(p, 1) is convex and thus, due to the linearity of the operator K,
the function (o, u) — KL(p, Ku) is also convexr.

(ii) For any fived nonnegative p € L*(Q), the function u — K L(p, Ku) is lower semicontinuous
with respect to the topology Trz2.

(iii) For any nonnegative functions ¢ and 1 in L*(Q), one has

2 4
o = ¥l < (3llellam + 319l() KL(e.0) (4.17)

Proof. (i) See [90], Lemma 3.4.

(i1) For the proof we consider [90], Lemma 3.4 (iii). Let be the a nonnegative function (¢ €
L?(Q)) and consider u,, converging in the topology 772 to some u € {w € L? : w > a.e.}; being
U, a sequence in the domain of the function w — K L(p, Kw). As the operator K is sequentially

continuous with respect to the topologies 72 and 7y we have the convergence of the sequence (Kuy,)
¥

Ku,

to Ku in the norm topology L?(Q). Thus, the sequence (<p log ( ) —@+Ku, ) converges almost

everywhere to ¢ log (Kﬁ) — ¢ + Ku and we obtain by Fatou’s Lemma
u
/ (gplog (i) —p+ Ku)da < liminf/ (gplog ( d ) —p+ Kun>da (4.18)
Ku T n—oo Ku,
Q Q

And (4.18) means that the function w — K L(p, Kw) is lower semicontinuous with respect to the
topology 71p2.

(i1i) See [90], Lemma 3.3 and [13], Lemma 2.2.

Corollary 4.2.3 If {p,} and {1} are bounded sequences in L*(Q), then

lim KL(%M%) :Ojnh_{r;o”(pn_wnHL?(Q) =0 (419)

n— oo

Proof. The statements follows directly from Lemma 4.2.2 - (iii)
We make now some considerations involving the functional K and the regularization functional R.

Assumption 4.2.4 We assume here that the regularization functional R(p) : Dp — R>oU {oo} is

convex on a Banach space D, C L*(Q)".

For the next considerations, it is necessary the assumptions below
Assumption 4.2.5 We assume also that

(i) The operator K : L?(Q2) — L?(Q) is linear and bounded,



4 Parameter ldentification Problem 39

(ii) The operator K preserves positivity, (Ku > 0) a.e. for any u > 0 a.e. and the equality is
fulfilled if and only if w= 0.

(iii) If u € L?(Q) satisfies c; < u < cy a.e. for some positive constants c1,co > 0 then there exist

c3, ¢4 > 0 such that c3 < Ku < ¢4 a.e. on €.
(iv) The functional G(p) : (Dp,7) — L? is continuous and G(p) > 0.
(v) The functional KL(f, KG(p)) is lower semicontinuous with the topologie T.

(vi) For every a > 0, the sub-level sets Sg(a) of the functional R(p), defined by
Sr(a) :={peCD,: R <a} (4.20)

are sequentially precompact in metric topology .

(viii) The functional R : Dp — R U {400} is convex, lower semicontinuous with respect to the
topology T (see Definition 4.2.6 below) and can also be singular, i.e. it is not differentiable in

the classical sense.

(iv) We consider D, compact embedded in (L)% x (L>)?3 x (L?)3.

Definition 4.2.6 (Lower Semicontinuous Functional) Let U be a linear locally convex space and
I:U — RU{+o0} a functional (not necessarily convez). Then I is lower semicontinuous, if it

satisfies the following equivalent conditions:

(i) The sub-level sets
{peU:I(p) <a} (4.21)

are closed for every a € R.

(ii) For any u € U and for every converging sequence (p,) with limit w it holds

I(p) <lim inf I(p,) (4.22)

n—oo

4.3 Existence of a Minimum

Theorem 4.3.1 Let K, R and I satisfy Assumption (4.2.5). Moreover assume that o > 0, f €
V,.(Q) is nonnegative and that the operator K satisfies K1 # 0, where 1 denotes the characteristic

function on Q. Then, the functional I defined in (4.15) has a minimizer.
Proof. 'To prove the above theorem, we use the method of calculus of variations proposed in [4].

Let D(I) # 0, i.e., there exists at least one v € L%*(Q) such that I(v) < oo. Thus, consider
(pn) € D), pn > 0 a.e., be a minimizing sequence of the functional I, i.e.

lim I(p,) = inf I(p) =: Lyin 4.23
Aim I(pn) = inf 1(p) < oo (4.23)
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Thus, for all € > 0 there exists ng € IN such that for all n > ng

a:= Lnin+€> I(pn) 415 KL(f, KG(pn)) + aR(pn)

4.24
> R(pn) 2y

due to the positivity of the K'L functional and o > 0. Thus (pp)n>n, C Sr(a) and it follows from
Assumption 4.2.5 - (v) that (p,) has a 7p2-convergent subsequence (p,,), which converges to some
p € L2(R2). As R is lower semicontinuous with respect to topology 772, we have

Definition 4.2.6 4.24
R(p) < lim inf R(p,,) < a (4.25)
Jj—o0

and with it that p € Sg(a). Simultaneously, caused by Lemma 4.2.2, the functional I in (4.15) is
lower semicontinuous with respect to the topology 772 and implies
Definition 4.2.6 ) 4.23

I(p) < lim inf I(py,

which means that p is a minimizer of I.

4.4 Properties of G(p)

Theorem 4.4.1 Let (ki,ko, ks, Va, Vi, V,Da,D7,Dy) € D,(G(p)); G(p) being defined as in

(4.9) and the vector p containing all nonnegative parameters (4.7). Then, uw = G(p) is non-negative.
Proof. By the equation (4.9) we have
G(p) = u(z,t) = Calz,t) + Cr(z,t) + Cy(x,1) (4.27)

Then we need to show that the radioactive concentration in artery, tissue and vein are nonnegative.

First consider C4(x,t) as in the equation (3.1). We can write

L(p)Ca(z,t) = DAAC4(z,t) + VaVCa(x,t) + (ko + k1)Calz,t) = f(x), €0 (4.28)

This type of differential equations satisfy the so-called maximum principle implying that the max-
imum,/ minimum of a function in a domain is to be found on the boundary of that domain [40].

Consider the following proposition:

Proposition 4.4.2 (Strong Mazimum Principle) Let C4(z,t) and L(p) as in the equation (4.28)
with LC'4 > 0. Then C4 >0 or Cy4 has no local minimum in the interior of Q0 on t > 0.

In addition, we want apply the maximum principle for the case LC 4 > 0.

Proposition 4.4.3 (Weak Mazimum Principle) Let C4(x,t) and L(p) as in the equation (4.28)
with LC' 4 > 0. Then if C 4 has the global minimum, it is on at t = 0.

Proof. Let C 4 such that the global minimum at an interior point T € Q and C4(Z) > 0. Consider
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then the function €4 = C4 + €t and Cy = 0. Then holds

ath = atCA + €
0;C% = DAACA +VaAVCy — (ko + k1)Ca + €

First consider the case C% > 0 in (z,t) and assume the minimum of C4 in C4 = 0, we have then
0,C% =0, (ko 4+ k1)Ca =0, VC4 =0 and D4AC 4 > 0, which implies

75+8th:DAAOA+VAVCAf(ko+k1)CA
0>—-e=D4AC4 >0

And as C% > 0, we have
CG=Ca+et>0=Cy > —ct Ve

And thus C4 > 0 when € — 0 (considering « sufficiently small) which is a contradiction to a Strong
Maximum Principle. In the same way, the proof holds for C'+ and Cy,, considering the functions
C% = C7 + et and C5, = Cy + et. For more examples see [40].

We know then that in ¢t = 0, C%(x,0) > 0, C5(x,0) > 0 and C5,(x,0) > 0. Consider then the case
where C(z,t) < 0 and exists C4, (7, ) so that the minimum is found when C%(Z,¢) =0 for t <t
without loss of generality and

Co(z,t) >0 C5(z,t) >0 C5(x,t) >0

and, therefore

0C 4

—e—==DAACA+VAVC A+ (ko + k1)Ca+ ks Oy
ot — Y —- ' ==
—~ >0 =0 =0 >0 >0

=0

—0=—-2>0
and the same is true for the equations (3.2) and (3.3).

Theorem 4.4.4 (Continuity) Let (k1, ko, ks, Va, Vi, Vo, D4, D7, Dy) € Dy(G(p)) and let o € Ry
be positive. Then u = G(p), G : D, — W(0,T; H', H™1) is continuous.

aCA
ot
Proof. To prove the continuity, let © = G(p) = %Ct‘i and let for this case dyu = L(p)u,
aCcr
ot
according to the equation (3.6).
9C 9C 4,
oA o0,
Consider u; = 8:1 and ug = 6;2 associated respectively to the vectors of parame-
aCr aCr,
ot ot
ters p; and po. Writing
Opu; = L(pi)u; (4.29)

Applying above the difference @ = u; — us, we have

3t(U1 - Uz) = L(Pl)ul - L(Pz)uz

(4.30)
= L(p1)(u1 — u2) + (L(p1) — L(p2))u2
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= Oyt — L(p1)u =
t (p1) f (4.31)
= (L(p1) — L(p2))uz
Finally the continuity in u can be shown by a Lipschitz-argument:
= |@]|wo,r;m,H-1) < f||f”L2(07T;H—1) (4.32)
< &[|L(p1) — L(p2)llz2(0,151-1)
Then since L is linear, we have
[[(L(p1) — L(p2))v|‘L2(O,T;H*1) < cl|p1 _p2||DpH'U||W(O,T;H1,H*1) (4.33)
Lemma 4.4.5 Let L(p) satisfy the conditions above then
IL(p)ollL2(0,7;0-1) < cllpllp, [v]lL20,7;m1) (4.34)

Proof. First we consider only the portion that represent the diffusion. Calculating the norm for
this portion, we have:
IV (V)2 0,m:m-1) < cll@Vvl|L2 (4.35)

And considering ¢(z) € D, we can calculate

T T
[ [ewopasa <l || [ [ vopasa
0 Q 0 Q (4.36)
< [lellool[Vol| 2
< [lelloollvll L2 (0,7;m)
Analyzing now only the portion that represents the transport we have
IV (@o)llz2o,mm-1) < ellv]|re (4.37)

< ellevllr2(0,719)
with ¢ < 2 optimal so that
L1~ H™'.

Considering the regularization functional cited previously, remembering that Q C R?, the following
embedding of H' holds by [95] Lemma 4:

H' — L
< oo, if d=1,
for 2 < T ¢ < oo, if d=2, (4.38)
2d
Y i d=
<d—2’ if d=3

and thus, employing the Hélder’s inequality

H@UHL?(O,T;LQ) < ||<P||L2(o,T;Lq)||UHL2(0,T;LT) (4.39)
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And finally, considering the portion that represents the exchange of materials and using again the

Holder’s inequality we have

llevl|zzo,m;m-1) < €llel|r2 (4.40)

Theorem 4.4.6 Under the condition of Theorem 4.4.4, the operator G(p) for G(p) defined as in
the equation (4.9) is Fréchet-differentiable.

Proof. Let yu = L(p)u, u = G(p) and consider v = G’ (p)y being the derivative in the direction
@. Therefore

0
5 (G P)9) = 0w = L(p)(G'(p)#) + (L' (P)¢) G (p)
4.41
= L) + K(£)G) 4y
!
ov
. E = L(p)v +f (4.42)
Where
&' (p) = lim Glptep) —Gp)
e—0 £
eG'(p)p = G(p +ep) — G(p)
Thus,
IG(p + e9) — G(p) — G (p)el| = 0(c)
(4.43)
= ||G°* =G —ev||=0() =0
e—=0
and hence, the equation (2.10) is satisfied for all ¢ € L.
Consider now that oG = L(p+ep)G°,G° = G(p + ep), 88—(5 = L(p)G(p), % = L(p) + f and
w = G — G — ev, then
0(G* -G —¢ev ow
% =5 = Lo +e9)Gp +ev) = Lp)G(p) — e(Lp) + f)
S L (G5 — G —ev) + L5(G + 2v) — L(G + 2v) — ef (4.44)
w g9
and thus,
ow
R — L +
5 = LPw+yg (4.45)

= [lwllwo,r;m1,1-1) < cllgllL2 0,701
Since L¢ = L(p + ey), L is linear i.e. L(p1) + L(p2) = L(p1 + p2) and L' (p)p = L(p), we have

g=L(G+ev)— L(G+ev)—cf
=L(p+ep)(G+ev)— L(p)(G+ev) —eLl(p)G
= (L(p+ev) — L(p) —¢L(9)) G + (L(p+ ) — L)) ev (4.46)

=0(e—0) eL(p)

=2 L(p)v.




4 Parameter ldentification Problem 44

And we have to verify
IL(p)ol] < ellel® (4.47)

where the physiological parameters Da,7/y € (L*)3, Vv € (L°)P3 and k; € (L?)3, for
i=1,2,3.

First we consider only the portion that represent the diffusion. Calculating the norm for this

portion, we have:
IV - (V)| 20,01y < €llpVl| 2 (4.48)

And considering ¢(z) € D, we can calculate

T T

//¢2|Vv\2dxdt§|\<p||§o //|Vv|2dmdt

00 0 Q (4.49)
<llglloe  [IVol|L2
——

SHUHL2(0,T;H1)

As we know that % L(p)v + L(¢)G(p) and it implies

lollw 7500, 1-1) < cllfllL20,m3m1), (4.50)
calculating || f|| we have

||f‘|W(O,T;H1,H*1) = ||V - (¢VG(p))l|
< |lelloo - I1GP) 20,711 (4.51)
<<leplloo - HG(p)HL2 (0,T;H?1)
And thus,
IV (eVu)llwo,rm,1-1) < ||Vl
< lelloollv]] 2
<l (el fllz2) (4.52)

< elloolllelloo |G P | 20,7507
< I3 IG®)]22

Analyzing now only the portion that represents the transport we have

IV - (@)l o) < elgvlzs (4.53)

< el z2(0,7;L9)
with ¢ < 2 optimal so that
LY~ H L.
Considering the regularization functional cited previously, remembering that Q C R?, the following

embedding of H' holds by [95] Lemma 4:

H'<— LT
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< o0, if d=1,
for 2< T ¢ < o0, if d=2, (4.54)
2d
— if d=
< 71— i 3
and thus, employing the Holder’s inequality
vl z2(0,7;09) < |l@llL2 0,520 |l L2 0, 157) (4.55)

and, as seen previously, we need to calculate ||f][:

HfHL2(O,T;H*1) = C||(<PVG(p))||L2(0,T;H1)

(4.56)
<|lellzz(0,1;z9) - 1G@)||L2(0,758m1)
that implies
[Vl L20,01-1) < €Vl 20,101
< ellellrzo,mpa vl 20, m) (4.57)

< 2llelI2a[IG®)l L2 (0,:m)
(4.42)

for appropriated T and ¢. And finally, considering the portion that represents the exchange of

materials and using again the Hélder’s inequality we have

llovl|L2(0,1m-1) < €[l (4.58)

Thus, with all the considerations made above, we have that G(p) is Fréchet-differentiable.

4.5 Stability of the regularized Poisson estimation problem

The stability results guarantee that the regularized approximations converge to a solution p, if the

approximated data converge to a smooth function f.

Theorem 4.5.1 Let K, R, I and V,(Q) satisfy Assumption 4.2.5. Let also o > 0 be fized and
assume that the functions f, € V,,(R?), n € IN, are nonnegative approzimations of a data function
f e V,(Q) such that

lim KL(fp, f) =0 (4.59)
n—oo
Also let
pn€arg min {In(p) := KL(fo, F(p)) + R(p)}, n€N (4.60)
p>0a.e.

with F(p) = KG(p) and p a solution of the reqularized problem (4.15) corresponding to the data
function f. Additionally, we assume that log f and log(KG(p)) belong to the function space Ly (€2)

and there exists positive constants cq, ...,c4 such that
0<c1<f<ec and 0<c3 < KG(p)<cy ae. on (4.61)

We supose now that the sequence (f,) is uniformly bounded in the V,-norm, i.e, there exists a
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positive constant cs such that
[ fullv, <¢s, ¥V nin N (4.62)

Then the problem (4.15) is stable with respect to the perturbations in the data, i.e, the sequence
(pn) has a T-convergent subsequence and every T-convergent subsequence converges to a minimizer
of the functional I in (4.15).

Proof. We will use the pre-compactness property of the sublevel sets Sg from Assumption 4.2.5
- (vi) for the existence of a T-convergent subsequence of (p,). We have to show also the uniform
boundedness of the sequence (R(py)). Consider a@ > 0 a fixed regularization parameter. For any
n € IN, the positivity of the K L functional and the definition of p,, as a minimizer of the objective

functional I, in (4.60) implies that

R(pn) < KL(fn, F(pn)) + R(pn) < KL(fn, F(p)) + R(p) (4.63)

L (pn) I (p)

Hence, the sequence R(p,) is bounded if the sequence K L(f,, F(p)) on the right-hand side of
(4.63) is bounded. To show this, we use the condition (4.62) and obtain the uniform boundedness
of sequence (f,,) in the L?(€2)-norm, due to continuous embedding of V,, in Assumption 4.2.5 - (vii).
Therefore, condition (4.59) and the result in Corollary 4.2.8 yield the strong convergence of (fy,)
to f in L?(Q), i.e, we have

Jim [[f = fallz@) =0 (4.64)

Thus the condition (4.61) implies together with the inequality

KL(fu, F(p)) — KL(f, F(p)) — KL(fu. f)| = / (log KF(p) —log )(f — fu)du

Q
< |[log KF(p) —log fllL(a) [If — fallLg,
<00 59,
the following convergence:
lim KL(fn, KF(p) = KL(f, KF(p)) (4.65)

n—oo

The expressions KL(f, F(p)) and R(p) are bounded because p is a minimizer of the regularized
problem (4.15) corresponding to the data function f and thus also the sequence (K L(f,, F(p))) is
bounded, since convergent to KL(f, F(p)). This means, together with the boundedness of R(p)
and the property (4.63), the uniform boundedness of the sequence (R(py,)).

The uniform boundedness of the sequence (R(p,)) means that exists a € R>g such that (R(p,))
is contained in the sub-level set Sk (a). Thus, the precompactness Assumption 4.2.5 - (vi) ensures
the existence of a 7-convergent subsequence (py,;), which converges to some p € D,. Actually p lies
in Sg(a), since R is lower semi-continuous with respect to the topology 7 and therefore Sg(a) is
T-closed. (see Definition 4.2.6).

Consider now an arbitrary subsequence (py,) of (p,), which converges to some p € D, with re-
spect to the topology 7. Due to the sequential continuity of the operator K we have also the

convergence of (K F(py;)) to KF(p) in the strong norm topology on L?(£2), as well as the pointwise
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convergence almost everywhere on 2. Similarly, it holds also for the sequence (f,,), which converges
strongly to f in L?(Q) (4.64). Thus, since the functions f,, and p,, are nonnegative for all n € IN
and K is an operator that preserves positivity (see Assumption 4.2.5 - (ii)), we can apply Fatou’s
Lemma to the sequence (fy; log(fn,/KF(pn;)) — fn, + KF(pn,;)) and we have

KL(f,KF(p)) < lim inf KL(f,,, KF(pn,)) (4.66)
]‘)OO : -

Due the lower semicontinuity of the regularization energy R (see Assumption 4.2.5 - (viii)) and
due to (4.63), (4.65) and (4.66), we obtain the inequality

KL(f, KF(5) + R(p) < lim inf KL(f,, KF(py,))+lim inf R(pn,)

J—00 J—0o0

<tim inf (KL(fu, KF(pa,)) + R(ps,))
< lim sup (KL(fnj , KF(pn;) + R(pnj)) (4.67)
j—o0
4.63
< tim sup (KL(f,. KF(9) + R(p))
2 KL(f.KF () + R()

which means that p is a minimizer of the functional I in (4.15).

4.6 EM Algorithm

We present in this section the Expectation Maximization algorithm [34, 82, 97], which was created
by Dempster, Laird and Rubin (1977) and is commonly used to solve maximun likehood estimation

problems. Such problems appear in several areas e.g. astronomy, microscopy and medical imaging.

We work here with a formulation based on inverse problems with measured data from Poisson

statistics associated with the problem (4.9).
Computing the first order optimality condition for (4.9), we have

. f)
0=K*1-—K*(-2) -
(Ku (4.68)

0= MAu

where X represents the Lagrange multiplier (A > 0) for the Karush-Kuhn-Tucker (KKT) conditions
[52], K* is the adjoint operator of K and 1 is the constant function taking only the value one.

If we multiply the equation (4.68) by u we obtain the iterative scheme

Uppr = K*( / ) (4.69)

K*1 Kuk
just eliminating the second equation in (4.68) and preserving the positivity of K.

We now consider two cases, the case of noisy data and noise-free data. In the case of noisy data,

we must take in consideration if the operator K is discrete or continuous. If K is a matrix and u
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a vector (discrete case) it is guaranteed the existence of the minimizer since the smallest singular
value is bounded away from zero by a positive value [93]. If it is continuous, we can prove the
convergence but even a divergence of the EM-algorithm is possible due to underlying ill-posedness

of the image reconstruction problems.

Already in the case of noise-free data the convergence proofs of the EM-algorithm can be found in

[56, 82, 91, 102], even though the speed of convergence of iteration (4.69) is slow.

4.7 Forward-Backward Splitting

The splitting methods are based on the simple idea of dividing the original problem into two sub-
problems that, when solved iteratively, provide a solution to the original problem [7]. A major
advantage of using splitting methods is the effort required to solve a simple problem. Here we
present a splitting method called Forward-Backward Splitting that in comparison to the Gradient
method, gives a significant gain of time in search of minimizers parameters for our optimization
problem. Forward-Backward Splitting methods are versatile in offering ways of exploiting the

special structure of variational inequality problems [28].

We apply the method to the minimization problem following
u € arg I’IIEIS{K(’LL) =L(u) + M(u)} (4.70)

where for our case L(u) denotes the Kullback-Leibler functional and M (u) represents the regulari-

zation functional R(p). Thus, we can solve the problem with the aid of a variable stepsize:

ukJr% S {uk — TkauL(uk)} (4 71)

Uk41 € {ukJr% - TkauM(uk+1)}

for 7 a positive stepsize sequence.

The first-half step can be realized via the well-known EM iteration to reconstruct the image u by

_oup S
Upy = o K (Kw) (4.72)

Thus, wu 1 is obtained with the above equation and (4.13) can be rewritten as

U —UuU 1
g=—t3 (4.73)
Uk

Equation (4.73) can be treated as a solution of the minimization problem

N =

- 2

(=) dud i
//T zdt — (u, q) 1, (0) — min , (4.74)
0 Q
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And, if we change u by G(p) we obtain

T 2
1 Ut ) .
3 // dzdt — (G(p), 4) 1, o) — min , (4.75)
P
0 Q

The Fréchet-derivative of (G(p), q) in p is simply G'(p)*q. Using (4.14) we can replace — (G(p), q)
by R(p) to obtain the reduced problem

- 2

1 Ukt ) ,

3 // -~ % dadt + R(p) — min , (4.76)
P

0

The second half-step is a parameter identification problem, formulated as the constrained optimiza-

tion problem with added regularization, given by the equation (4.76).

Finally the first-order optimality condition for (4.76) is given by

0=G"(p) <G(p)_uk+é> +R'(p), (4.77)

U

We can not solve the above equation directly, since the parameter p contains several functions that
have to be computed each on their own. This problem will be treated as a problem of identification

of parameters, discussed in Section 4.8.

4.8 Parameter Identification Problem

The purpose of this section is the development of the parameter identification problem to allow
the calculation of all the biological parameters that composes the vector p. Unfortunately we can

* is also

not directly solve the equation (4.77) for p, since p contains several functions and G’(p)
difficult to calculate because it is a vector of functions itself. Thus, minimizing the function below
(with the regularization added)) we can find the values that correspond to the desired physiological

parameters

N | —

T = g T
// ~——dzdt+ R(p) + // —u) qdzdt — min , (4.78)
p
0 0

with G(p) = G(p(x,t)) = u(x, t), for all (z,t) € Q@ x[0,T]. With the associated Lagrange functional

one has
T T
u — uk+
// (TS YRS +//(G(p)fu) g dudt (4.79)
0 0 Q

MM—A

L(u, p;q
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And with all constrains to C 4, Cy and Cr we obtain the follows Lagrange functional:
L(u(z,T),Calz,t), C(2,t), Cy(,t), DT (), Da(), Dy (2), VT (2), Va(),
VV(J;)’ kl (Z‘), k2(x); k’g(l‘), q(.f, t)a M('T7 t)7 77(3:7 t)7 ’)/(l‘, t))

o [ [ i Ry Da@) + RaDule) + RelDr () + RaVal2)
0 b

+Rs(Vw(2)) + Re(Vr(z)) + Rr(k1(x)) + Rs(ka()) + Ro(ks(2))
T

4 / / (Cale. 1), Cr(, 1), Oy, 1), Dr(x), Da(x), Do), Vir (), Va(z), V() — ) g(x, t)dadt

(e}

T

. / T/ (807 — V(Vr(2)Cr(2,1)) = V - (D1 (2)VCr(z,1))

(e}

ke (2)Ca(, ) + (Ko + ko) (@) O (0, ) ol £)dedt

/ / (%5 0) = TA@)Cai,) = V- (D) V(a0
—k3(z)Cy(z,t) + (ko + k1)(2)Ca(z,t)) n(x, t)dadt

/ / (%0 = VW @)Cu(a.0) = V- (Dy(a)VCu(a0)

—ko(z)Cr(x,t) + (ko + k3)(2)Cy(z,t)) y(z, t)dxdt
(4.80)

One must now calculate the optimality conditions to the problem, which means that all the partial

Fréchet-derivatives must be zero. Thus, considering the previous equation (4.80) we obtain

oL w(z,t) —ugy 1 (2, 1)
ou ug(z,t)

— q(z7 t) =0 (481)

To calculate the derivative in relation to D 4(x), let be J(D 4(x)) the equation formed only by the
terms of £ (4.80) containing D 4(x)

T
J(Dy(x ://DA WC4(z,t) - Vn(x,t) dedt + Ri(Da(x))
0 A

Take the directional derivative in direction ¢ (z)

T(Da(z) + ro(x / / Da() + 70(2))VCa(2,t) - Vi(a, ) dadt

+Ri(Da(z) + To(x))
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Thus

T
d

EJ(DA( z) 4+ Tp(x ://<p WWC4(z,t) - Vn(x,t) dedt + R'1(Da(z))e(z)

(=)

‘G

T
/VC’A x,t)Vn(x,t) dt] dx
0

T

/VCA x,t)Vn(x,t) dt>
0

And the derivative in relation to D 4(z) is

8DA /VCA x) - Vn(x,t) dt + R'1(Da(x)) (4.82)

Then, we obtain additional optimality conditions for Dy (z) and Dy (x)

T
% = / VCy (@) - VA(x,t) dt + R'5(Dy(x)) (4.83)

= /VCT(x) -Vu(x, t) dt + R's(Dr(z)) (4.84)

For V4(x), Vy(x) and V7 (z) one proceeds at the same way. Let the directional derivative in
direction ¢(x)

T
J(Valz) + 7oz //(VA(x) + 7p(x))Ca(x,t) - Vn(z,t) dedt + Ra(Va(z) + To(2))
0 A
Thus
J T
EJ(VA( z) + 1oz //w YCa(x,t) - Vn(z, t) dedt + R 4(Va(z))e(x)
0 A
= [ ¢(x) Cy(z, t)Vn(z,t) dt] dx
[|]
=( o(x), | Calz,t)Vn(z,t) dt>
]
Thus,
oL

v /VA(:E) -Vn(x,t) dt + R'4(Va(z)) (4.85)
0
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Consequently
s = [ W) 9rtant) de+ R0 (0) (4.86)
0
GVT / Vir(z) - Viala, £) dt + R (Vi () (4.87)

For the derivative in relation to Cr(z,t) consider the directional derivative in the direction ¢ (x,t).

T
%@T(at,t)://%(G(CA(x,t),Cv(x,t),CT(x,t)+TLpT(x,t),)\T(x),)\A(q:),/\v(at),Dv(x),
0 Q

x), Da(x),Va(z), Dr(z), VI (x), k1(2), k2(x), ks(z)) — u(z,t))g(x, t)dzdt

=

+

<1 O —

[ (G0 4 ror(.0) + V) Crant) + ror (o)
Q

V- (D7 (2)V(Cr(2,t) + 77 (2, 1)))
(ko + ko) (@)(Cr (2, 1) + Too7 (2, ) ) (2, 1)
—ka(2)(Cr(2,t) + Too7 (2, 1))y (2, 1)) drdlt

T
oG
- / / Se- @ tale. dud:
T

9
N SOT

\

(E t +VT( )@T(xat)vﬂ(xat) +DT(‘%)V@T(I’t)Vﬂ($7t)

+( ko + ko) (@)pr (@, Ol t) — ka(@)r (e, Oy (e, )dadt

/ / (5tt:8) = P@t) + V(o) Vit t) = ¥ (Dr () (o)
+(ko + ko) (@) () — ka(z)y(2, 1)) @7 (2, t)ddt
T
+ [ertwtnt.s|, + [ [ Dr@erte)Vi ndsd
T 0 9Q
(4.88)
As the above equation is zero, we have
O V@)Vt 1) V- (D () Vi, 1)) + (ko + o) (), )
— ko(z)y(z, t) + q(z,t) (4.89)

oCr
subject to  p(z,T)=0 forallzeT.

Similarly, one can calculate the derivatives in relation to C4(x,t) and Cy(z,1?):
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T
seeale) = [ [ (o) = Shat) + VAW Talant) = 5 - (Da0)Tn,0) dac
0 Q
+ (ko + k1) (@)n(z,t) —k1(x)p(z,t)) palx, t)dedt + /goA(a:, t)n(z,t) OT (4.90)
. A
+ D 4(z)pa(x,t)Vn - ndzdt
/]
with
S = Va(0)V0(a.t) = 7 (Da@) Ve, 0) + (o + k) (@), ) — Ba(@hlant) + (e, )
subject to n(x,T) =0 forallz e A.
(4.91)
and
vl / / (paent) = Srt) + V@) Va(at) = V- (Dyfa) V(e 0)
+(ko + ka)(x)v(x, 1) — ka(z)n(2,t) pv (@, t)dzdt (4.92)
T
+ [ov@ino| + [ [ Dyhovenvy - nds
v 0 00
with
O = Vo) Valast) = V- (D ()90 0) + (o + k) (01 (28) — ha (o) + (o)
subject to  v(z,T) =0 for allx € V.
(4.93)
% = G(Cal(z,t),Cy(x,t), Or(z,t) + Tor(z,t), AT(2), Aa(2), Av(2), Dy (2), Vo (2), DaA(Z),

VA(LC), DT(‘Z)v VT(x)v k1 (x)’ kQ(x)v kg(l‘)) - u(‘rv t)
(4.94)

4.9 Regularization

The regularization consists in the determination of the smoother approximate solution compatible
with the data of observation for a certain level of noise. The fact of seeking a smoother solution
(regular) transforms the ill-posed problem in a well-posed, but still able to reflect the physical
situation to be modeled [33].

We choose the regularization parameter as the lowest value one able to produce a stable solution
to the problem, reducing the influence of a-priori information and also the bias. Then we apply
the regularization incorporating a-priori knowledge and the gradient regularization as follows in the

next sections.
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4.9.1 Regularization Incorporating A-priori Knowledge

We will here use a-priori knowledge in the regularization functional for each parameter of the
problem. Whereas, for example, the velocity of the radioactive concentration in the artery has a
typical value of V}, we can regularize V4 by
@
R(Va(@)) = 5 /(VA — Vi)2da (4.95)
Q

where a denotes the regularization parameter, o« € R;. As seen in [6], such a-priori regularization

can also be generalized to all biological parameters of vector p as follows

Raw(g(w),9") =5 /(g(w) —g")dw (4.96)

for a set ¥ C Qor ¥ = [0,7] and @ € Ry. In the following, the a-priori knowledge will be
incorporated in each parameter of the problem independently. We denote our a-priori knowledge
with k1, k2, ks, Va, Vi, Voo, D 4, D7, Dy and for the sake of simplicity, we write Ry, 4(Va(x)) instead
of Ra,A(VA(I); Vj)

4.9.2 Gradient Regularization

Like the a-priori regularization we also will apply the Gradient regularization in each parameter
independently. The regularization of the gradient is designed to ensure (guarantee) smoothness in
space and time, adding a bound to the spatial gradients (Vk1, Vka, Vks, VVA, VVF V'V, VD 4,V D7,
VDy). The regularization added to the terms is given by

Reals) =5 [ IVola)Pds (1.97)
P

with ® € Q. Thus, replacing in the equation (4.80) by the a-priori and gradient regularizations, we

have
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L(u(x, T), A7 (x), Aa(x), A (x), Calz, 1), Cr(2,t), Cy(2,1), D7(2), DA(2), Dy (),
V7 (), Va@), W), ki (2), k2 (), k3(2); ¢(2, 1), plx, 1), n(, ), v (2, 1))

z)) + Ra,7(Aa(2)) + Ra,7(k2(2)) + Ra,7(k1(z))
2)) + Ra,7(D7(2)) + Ra,a(Aa(2)) + Ra,a(Av(2))

k1(2)) + Ra,a(kz(2)) + Ra,a(Va(@)) + Ra,a(Dalz))
+ Ray(A7(2)) + Ra,v(k2(2)) + Ra,v (ks (z))

+ Rav(Dy(2)) + Re, 7 (A1 (2)) + Re,7(Aa(®))
+ Re,7(Dr(2))

) + Re, alks(z))
z)) + Rf v(A (@) + Rev(Ar(z))
)+ Rev(W()) + Rev(Dy())

x))
z)
)+R5A( A

(
+ Rev(ks(x)

VT(m a(x), Wz)) - u)gdedt

+//<8(J¢ (Vi (2)Cr(2,8)) — V - (D (2)VCr(2,1)) — kr (2, 9)Coal, 1)
0

+(ko + k2)(z)Cr(, t)) w(x, t)dxdt

// <8CA Va(2)Calz, 1)) — V - (Da(2)VC.a(2,1)) — ks (2)Cy(z, 1)

+(ko + k1) (z)Calx, t)) n(x, t)dxdt

// <8CV W(@)Cv(z,1)) = V- (Dy(x)VOy(2,1)) = ko (2)C7 (2, 1)
+(ko + k3)(z)Cy(z, t)) y(z, t)dxdt
(4.98)

By the gradient regularization we have the guarantee that the reconstructed parameters k1, ko, k3, V4,

Vr, Vo, D4, D7, Dy, become parameters in the Hilbert space.
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Thus

L(u(z, T), \r(x), Aa(z), \w(x),Ca(z,t), Cr(x,t),Cv(x,t), D7 (x), Da(x), Dy(x),
Vr (), Valz), V(z), ki (z), k2 (2), ks (2); q(, 1), p(z, t), n(, 1), v(x, 1))

1 r U= Upy L 1)?
= QJ/Wd xdt
+% (/(/\T(«’E) — N0 4+ (Aa(z) = N2 + (ka2(z) — k3)? + (ka(z) — kT)?
s

+(Vr(z) — V)2 + (D1 (z) — D) da
+ /(AA(w) —X)%+ (w(@) = A0)? + (ki () — k1)* + (ks(x) — K3)°

A
+(Va(z) = Vi)* + (Da(z) — Da)’dx

+ /(/\v(w) = A0+ (A7 (@) = A7) + (ka(2) — k3)* + (ks(@) — k3)®

v

+H(W(@) = W) + (Dy(z) — D?)de>

+§ (/()\T(l’) +Aa(z) — 1)2dz + /()\A(x) + Ay (2) — 1)%dz + /(Av(w) FAr(z) — 1)2da
T

A v

+ () + Xa(@) + Av(z) — 1)2dx>
!

dm—i— /()\A(m))\v(:ﬂ))2d:c + /()\v(ac))\T(m))de + /()\T(CC))\A(CL‘))\v(I))2d{E>

A v S

</|V)\T W+ VAL @) + [Vka(2)]” + VR (2)]* + |V V7 (2)* + VD7 (2)|* da

48
*3
/|V/\A WP+ IV (@)]? + | VEL ()] 4 [Vks(2))* + |[VVa(z) > + [VDa(z)|*de
A
/!

VA (@)[* + VA7 (2)]* +sz(w)|2+|Vk3(x)2+VVv($)|2+|VDv(x)2>d$

+ ( )?CA(xvt)vCT(mat)7CV(x7t)7DT(x)’D-A(CC)?DV('T)7
[ Jiow
Vr(2), Va(2), V() — u)qdadt

Va
<8CT(x, t_ V(Vr(x)Cr(x,t)) = V- (Dr(x)VCr(z,t)) — ki1(z)Calz, t)

/] (ac/éix’t) — V(Va@)Ca(@,1) = V- (Da(@)VCu(@,1)) = ka(x)Cv(z, 1)
0 A

+
—
X
S
+
x>
=
—
—~
a
b
—~
8
=
~
=
8
~
=
QU
8
U
53

+/ / (802(56 L V(W (2)Cy(a,t)) = V- (Dy(2)VCy(z,t)) — k2 (2)Cr(2,1)
0o v

(4.99)
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The optimality conditions for ki (z), ko(x), ks(x), Vr(x), Va(z), Vu(x), Dr(z), Da(x) and Dy(z)
are

oL

0= e (A () (ki (x) — k7)) 4+ Aa() (b (x) — k7)) — E(Ag(2) Ak (2) + Aa(z) ARy (2))
—/CA(x,t)u(a:,t)dt—l—/CA(x,t)n(x,t)dt
0 0
(4.100)

0= o = a(A7(x)(ka(x) — k3) + Ay(x) (ka(x) — k3)) — E(Ar(2)Aka(x) + Ay (z) Ak (z))

+ O/ Cor (2, ), )t — 0/ O (2, )y (. )t
(4.101)

0=%m = a(Aa()(ks(x) — k5) + Ay (@) (ks (@) — K3)) — £(Aa(z) Aks(@) + Ay(2) Aks(w))

T T
—/Cy(x,t)n(a:,t)dt—i—/Cv(m,t)v(x,t)dt

0 0

(4.102)
oL i

0= g = [ Vr(@): Vule.0) di+ a(Vr(e) - Vi) — (Ar(@) AV (2) (4.103)

0
0= % = /VA(ZL‘) -Vn(z,t) dt + a(Va(z) — V) — E(Aa(z)AV4(2)) (4.104)

0
0= o2 / Vie) - V(1) dt + a(Vi(e) - V5) — €Av(@A (@) (4.105)
0= 50 / VOr(s) - Vula,t) dt + a(Dr(z) - D) — (0Ar(@)AD7(2)  (4.106)
0= % = /VC’A(QU) -Vn(z,t) dt + a(Da(z) — DY) — E(Aa(z)AD 4(x)) (4.107)

0= 8Dv / VO (x) - V(. 1) dt + a(Dyo(x) — D) — E(Ay (@) ADy()) (4.108)
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Identifiability Analysis

This chapter is dedicated to a discussion of the identifiability of all physiological parameters in the
system described by the parabolic differential equations presented in Chapter 3 .

To prove the identifiability this chapter is based on the work of [65].

5.1 Statement of the problem

For this section, consider Figure 5.1 which represents a system for the parameter identification with

a model. Consider also the system given by a parabolic differential equations (3.1), (3.2) and (3.3):

8@% =V- (VA(CC)CA + DA($>VCA) — (ko(:)j) + k1<.’L‘))CA + k,3(m)cv
% =V - (Vr(2)Or + Dr(2)VC7) — (ko(2) + k2(2))C + k1 ()4
88% =V - (W(@)Cy + Dy(z)VCy) — (ko(z) + ks3(z))Cy + ko (x)Cr

Considering the inverse problem for the full model we want to identify all parameters D 4, D7, Dy, V4, Vi,
W, k1, k2 and ks from the measurement C4(z,t) + Cr(z,t) + Cy(z,t) = u(z, ).

5.2 One-Component Reaction-Diffusion Model

In order to gain a first understanding we can write:

a% = V- (Va(@)Ca + Da(@)VCa) = (ko(2) + k1 (2))Ca + f(w,t), Vo eQ T>0 (51)

where C 4 = C4(z,t) is twice differentiable, f(x,t) is a input function and the boundary conditions

given by (3.5). We consider also that the input functions can be measured, i.e, are known functions.

The output y of the measurement system is given by

y(ap,t) = Calzp,t) xp €Qp, t>0 (5.2)



5 Identifiability Analysis 60

Consider that the equation below represents the model problem

e =G (Va, (0)Cot, + Dty (009C4,) = (o) + Ra2) oty + ft)  (53)

with z € Q,t > 0 and
Ym(Tp,t) = Ca,, (xp, 1) (5.4)

where Cy, (z,t) is the state of the model and the subscript m denotes model quantities. The

boundary condition for (5.3) takes the same form as in (3.15).

Definition 5.2.1 (Identifiable Parameters) We shall call an unknown parameter identifiable if it
can be determined uniquely in all points of the domain Q by using the input-output relation of the

system and the input-output data [65].

If Da(x) = Dy, (z),Va(x) = Vg, (z) and k(z) = kp(z), follow uniquely from the relation
e(xp,t) = y(zp,t) — ym(zp,t) = 0, for all z, € Q, t > 0, y(xp,t) given by (5.2) and y,,(zp, t)
by (5.4), thus Da(x), Va(z) and k(x) are said to be identifiable,. When e(z,,t) = 0, Vz, € Q,
t > 0 in the identification process of the Figure 5.1, the parameters are adjusted by some proper

algorithm so that e is zero in A(€Q).

C.A (‘Ta t)
)
System
fla,t) T e
Boundary -
Conditions
J
Model ”
Ca,, (z,t)

Figure 5.1: Parameter identification by using a model [65].

Assume that C4(x,t) is measured at all points of x € Q, ¢ > 0 and define the difference variable
e(z,t) = Ca(z,t) — Cq, (x,t), thus we have the Lemma 5.2.2, where the spatial one-dimensional

case is considered:

Lemma 5.2.2 The identity e(x,t) = 0 (equations (5.2), (5.4)) for allx € Q and t > 0 holds if and
only if

0C4,,

(Da(x) = Da,,(x)) D

(2, 1) + (Va(z) = Vaa,,(2))Ca,, (2, 1) | + (k(z) = km(2))Ca,, (2,t) =0
(5.5)

9
or

with x € Q and t > 0.
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Proof.  For the proof of Lemma 5.2.2, consider the equations (5.1), (5.4) and (5.5).

Oe 0 Oe 0 0C 4
3% = 3z (DA + VAe) + ke + 2 ((DA —Duy,,) a;"L + (Va— VA,H)CA,,L) + (k= km)Ca,,

ox
:g DA%—i—VAe +ke VeeQ and ¢t >0
ox ox

(5.6)

The initial condition for (5.6) is given by e(0) = u(0) — u, (0) = 0. Thus, due to the uniqueness of
the solution, we have e(x,t) =0 for all z € Q and ¢ > 0.

5.2.1 Identifiability of D 4(x)

It is assumed that e(z,t) =0 V 2 € Q,V ¢t >0, Va(z) and ki (x) are known or both vanish.

All the results are represented in terms of the state of the model C4 . However, since e =0, C4,,

may be replaced by the state of the system C 4.

Let us define 50
E(t) = {x € | =22 (a1) = o}

G(t)=Q— E(t) (5.7)

Proposition 5.2.3 D 4 is identifiable in A(QY) if there exists some t; > 0 such that
E(t;) # o (5.8)

and

G(t1) =9 (5.9)

where @ is the empty set and G is the closure of G. The condition (5.9) especially may be replaced
by
meas E(t1) =0 (5.10)

with meas E being the measure of E.

Proof. Let be q(x) = D4(xz) — D4, (). By the assumption we obtain from (5.5)

m

0 0Ca4,, |
92 {q(m) o } =0 forall z€Q andall ¢t>0 (5.11)

and 8C
Am
() A = et

By condition (5.8), there exists ¢ such that ¢(¢;) = 0. From condition (5.9), the set {z € Q|q(z) = 0}
is dense in 2, since ¢(z) is a continuous fuction in 2. We conclude g(z) = 0 for all z € Q, i.e., D 4(x)

is identifiable. Condition (5.10) implies meas G(t;) = meas 2, and consequently, meas G(t1) =

meas ). We have to show G(t1) = €. For this, assume Q — G(t1) # @. Then, there exists an open
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J such that Q — G(t1) D J. From Q D G(t1) U J (J and G(t1) are disjoint), we obtain meas ) >
meas G(t1)+ meas J, which implies meas J = 0. (Contradiction).

Now another condition is given for the identifiability of D 4(x).

Proposition 5.2.4 D 4 is identifiable in A(Q) if

Et)#£@ foral t>0 (5.12)
and
Ucw=a (5.13)
>0

oC
Proof. By (5.12) and Lemma (5.2.2), we obtain ¢(x) ( a’;m (x, t)) =0forallz € Qandallt > 0,
where q(x) = Da(x) — D4, (). Set M = UssoG(t). For any = € M, there exists some t(x) > 0
such that x € G(t), i.e., 9Ca,,

Ox
(5.13) and the continuity for ¢(x) it follows that ¢(z) = 0 for all = € Q.

(x,t) # 0. Thus, g(z) = 0 for all z € M, and from condition

Note that the condition (5.12) is stricter than (5.8), while condition (5.13) is weaker than (5.9).

Proposition 5.2.5 D4 is not identifiable if Ui~oG(t) is not dense in 2, especially if (1,5q E(t)

includes an open subset.

Proof.  We show that D (xg) # Da,, (zo) for some zg € Q even if e(z,t) = 0 for all z € Q and
all t > 0 when U;~0G(t) is not dense in . By the first condition, there exists an open subset J
satisfying Q — U;~oG(t) D J. Take x and € > 0 such that J O B(zo, €), where B(xo, €) ist one ball
with center zg and radius € and let r(z) be a twice continuously differentiable function in Q with
support in B(zg,€) and r(zg) # 0. Assume here D4(x) = D4, () + r(z). If 2 € B(xg,€), then

% =0 for all ¢ > 0 since
ox

reJc Q-|JGc a-JGw=E®
t>0 t>0 t>0

oC
and if x ¢ B(xzg, €), then (D4(z)—D 4, ()) (a’;m) =0 for all z € Q and all ¢ > 0 since r(x) = 0.
Thus, by Lemma (5.2.2), e(z,t) = 0 for all x € Q and all t > 0, and D 4(x) is not identifiable.

Moreover, if Ny~ F () includes an open subset , U;soG(t) is not dense in €.

Proposition 5.2.6 If E(t1) = & for some t1, then

x 820./4
8:527” (s:t1)
Dy(x) — Da, (x) = (Da(xg) — Da,, (x0))exp | — st (5.14)
B ke s )
for any x and xy € Q.
Proof. By the assumption, (5.11) holds in this case, i.e.,
0C,,, , 0%Cy,, B
W‘] () 02 q(z) =0
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oC
The equation (5.14) is a solution of this differential equation under the condition (8A) (x,t1) #
x
0.

Proposition 5.2.7 If E(t1) = @ for some t1 > 0 and if Ca,, (x,t) = V(X)W () for all x €
and t > 0, then D4 is not identifiable.

Proof.  E(t;) = @ implies that wy,(t1) # 0 and %(x) # 0 for any x € Q. Let Dy(z) =

Ox
1 .
W’ then D4(x) # Da,, (z) for all x € Q, while
Ox
(Dalx) = Da,,(x))
for all x € 2 and ¢ > 0. Thus,

Da,,(z) +

v ()
Ox

W (t) = wp (1)

2 Da) - D)2 <0

for all ¢ > 0 and, from Lemma (5.2.2), e(z,t) = 0 for all x € Q and all ¢ > 0. Thus, D4 is not
identifiable.

5.2.2 Identifiability of k;(z)

We now study the identifiability of k1 and to get a first idea we assume that D 4(z) and V4(x) are
both known, and that e(z,t) = 0 for all z € Q and all ¢ > 0. Let us define

F(t) ={z € Q|C4,, (z,t) =0}

(5.15)
H(t)=Q—F(t)
Proposition 5.2.8 &y is identifiable if and only if
UH® =0 (5.16)
>0

Note that ki is not identifiable if (), 4 F(t) includes an open subset.

Proof. By the assmption and Lemma (5.2.2), e(x,t) = 0 if and only if (k1(x) —k1,, (2))Ca,, (z,t) =
0. Certainly satisfied if the initial value C4, (2,0) > 0 or f > 0. Necessity follows by proceeding

similarly as in the proof of the proposition 5.2.5. The latter statement of the result is self -evident.

5.2.3 Identifiability of V4(z)

It is assumed that e(z,t) =0 Vo € Q, ¥Vt > 0, D 4(x) and k;(z) are known or both vanish.

Let us define

I(t) = {m e Q‘CAW (x,1) = o}
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L(t) = Q- I(¢) (5.17)

Proposition 5.2.9 V4 is identifiable in A(Q) if there exists some t1 > 0 such that

I(t1) # @ (5.18)

and

L(t;) =Q (5.19)
where O is the empty set and L is the closure of L.

Proof. By the assumption we obtain from (5.5)

0
2 [s(£)C4,,]=0 forall 2z€Q andall t>0 (5.20)

with s(z) = Va(z) — Va,, (z), and
s5(x)Ca,, = d(t)

By condition (5.18), there exists t; such that C 4, —g. From condition (5.19), the set {x € Q|s(z) = 0}

is dense in Q, s(x) is a continuous fuction in ). Thus s(x) = 0 for all z € , i.e., V4 is identifiable.

Now another condition is given for the identifiable of V4(z).

Proposition 5.2.10 V4 is identifiable if

Ity £ @ forall t>0 (5.21)
and
Uz =2 (5.22)
>0

Proof. By (5.21) and Lemma (5.2.2), we obtain s(z) (C4,, (z,t)) = 0 for all z € Q and all ¢ > 0,
where s(z) = Va(x) — Va,, (x). Set P = U;soL(t). For any x € P, there exists some t(z) > 0 such
that © € L(t), i.e., Ca,, (z,t) # 0. Thus, s(x) =0 for all z € P, and from condition (5.22) and the

continuity for s(z) it follows that s(z) = 0 for all z € Q.

Proposition 5.2.11 V4 is not identifiable if Ui~oL(t) is not dense in Q, especially if [, I(t)

includes an open subset.

Proof. We show that Va(xg) # V4, (x9) for some xg € Q even if e(z,t) = 0 for all z € Q and all
t > 0 when Us~oL(%) is not dense in . By the first condition for V4, there exists an open subset
R satisfying Q — U;~oL(t) D R. Take 2o and € > 0 such that R O B(zg,€), (B(zo,¢€) is one ball
with center zy and radius €) and let ¢(x) be a twice continuously differentiable function in Q with
support in B(xg,€) and t(zg) # 0. Assume here Vy(z) = Vy, (z) + t(z). If 2 € B(zg,¢€), then
C,, =0 for all t > 0 since

reRc Q- JL)yc - L) =10

t>0 t>0 t>0



5 Identifiability Analysis 65

and if © ¢ B(xo,€), then (Va(x)—Vy,, (2))Ca,, = 0for all z € Q and all £ > 0 since t(z) = 0. Thus,
by Lemma (5.2.2), e(x,t) = 0 for all z € Q and all ¢ > 0, and V4 is not identifiable. Moreover, if

Ni>ol(t) includes an open subset, Us~oL(t) is not dense in 2.

Proposition 5.2.12 If I(t1) = @ for some t1, then

T Cglm (S,tl)
Va(e) =V (2) = (Valoo) = Va (zo)eap | = [ 2 2

Zo

ds (5.23)

for any x and xzy € Q.

Proof. By the assumption, (5.20) holds in this case, i.e.,

aCA’"Z

ox =0

s'(2)Ca,, + s(z)

The equation (5.23) is a solution of this differential equation under the condition Cy4,, (z,1) # 0.

The proposition 5.2.12 does not necessarily imply the nonidentifiability of parameter V4 (z).

Proposition 5.2.13 If I(t1) = @ for some t1 > 0 and if Ca,, (x,t) is represented as vy, (z)wm(t),
then V4 is not identifiable.

Proof.  I(t;) = @ implies that wy,(t1) # 0 and 8avm () # 0 for any € Q. Let Va(z) =
x
1

VAm (CU) + ((3’[}7)1(:17))’ then VA(.’E) 7é V_Am (.’I}) for all z € Q, while
Oz

(Vale) = Vi, () 228 0 (1) = )
for all x € Q and ¢t > 0. Thus,
0
5y {(Val@) =V, (2))Ca,,} =0

for all t > 0 and, from Lemma (5.2.2), e(z,¢) = 0 for all x € Q and all ¢ > 0. Thus, V4 is not
identifiable.

5.2.4 Identifiability of V4(z), D4(z) and k;(z)

Now we want to analyze the case where the known quantity is C4(x,t) only, while the unknows
are Va(x), Da(x) and ky(x). Fairly restrictive conditions will be required for the identifiability of

all parameters.

02Cy,,
0x?

Proposition 5.2.14 If the functions C4(z), <5?;Am> (x,t) and < ) (x,t) are linearly in-
x

dependent as functions of t on a dense subset in S, then V4, D4 and ki are simultaneously identi-
fiable.
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Proof. By setting

¢1(x) = Da(x) — D4, (x)
q@2(z) = ki(z) — ki, ()
a3(z) = Va(z) — Va,, (z)

we obtain from (5.5)

02Cy,,
0x2

9Cy,,
ox

(.0) + (1) 2585 (0. 1) 1 o) Con, (2,) + a5(a)

Ox (@, t) + q3(x)Ca,, (z,t) =0

(5.24)

for all z €  and all ¢ > 0. From the assumption of linear independence, ¢1(z) = ¢} (x) = g2(z) =

a1 ()

g3(z) = g5(x) = 0 on some dense set in €, and again by continuity, ¢;(x) = ¢2(z) = g3(x) = 0 for
all x € Q.

Proposition 5.2.15 IfC 4 (x,t) = vy (x)wp,(t), then D4, Vi and ki are not simultaneously iden-
tifiable. This statement holds especially at the steady state.

Proof. For any function v,,(z) which is twice continuously differentiable, we can select nonzero

functions ¢; (), g2(x) and g3(x) which satisfy the following equation:

dv

% (ql(x)d;n(x) + Q3($)®m(96)> + qa(z)vm(z) =0 forall z€Q

Multiplication by w., (t) yields

(% (ql(x) 82;‘?” (2.1) + gs(2)Ca. (i, t)) +p(2)Ca (2,1) = 0

for all z € Q and all ¢ > 0. Since ¢;(z),g2(x) and g3(x) are nonzero, D4, k; and V4 are not

simultaneously identifiable from Lemma (5.2.2).

The above result implies, for example, in the case of the steady state, that it is not sufficient to
consider only the difference e for the identification of D 4(z), k1(z) and V4(x). However, if we have

an a priori knowledge that shows D 4(z), k1(z) and V4(z) to be constant, the result is obtained.

Now we study the most challenging case, where the known quantity is C 4(z,t) + Cy(z,t)+ Cy(z, t)
only, while the unknowns are the other parameters. Fairly restrictive conditions will be required
for the identifiability of all parameters.

5.3 Two-Component Reaction-Diffusion Model

Now we analyze a simplified problem, but already quite realistic model ignoring the portion that
represents the transport and considering only the differential equations that represent the radioac-

tive concentration in artery and tissue.



5 Identifiability Analysis 67

Let C4, + C1; = f (measurement) and C'r; = 0 for ¢ = 0. Consider the system

00A G (D g, (5)VC (1)) — (ko (2) + K, (2))Ct (,8) + s, (2)Cr () = 0

ag@ (5.25)
2 =V (Dr(@)VO7(2,1)) = (ko, () + ks, (2))Cri (2, 8) + Ky, (2)Cas (2, 1) = 0

‘We consider also that

Calz,t) = Ca, (2,t) = Cay(w,1)
Cr(z,t) = O (x,t) — Cry(z, 1)
Da(z) = Da, (2)
Dy (z) = D7 (2)
k3(z) = ks, (z)
ko(x) = ko, (x)
ki(z) = ki, ()

Thus, we have

0 Ca+ V- (Da(x)VCa(z,t)) + k3(x)Cr(2,t) — (ko(x) + k1(x))Cale, t)
=V ((Day (@) = D, (2))VCoa, (2,1)) + (k3, (x) = ks, (2)) O (2, 1) (5.26)
— (Ko, (2) + k1, (2)) — (Ko, (2) + k1, (2)))Ca, (2, 1)

0hCr +V - (D7 (x)VCr(x,t)) + ki (x)Ca(x, t) — (ko(z) + k3(x))Cr(x,t)
=V (D5 (2) = D7 (2)) VO, (2, 1)) + (k1 () — k1, (2))Ca, (2, 1) (5.27)
= (koo (z) + ks, (2)) — (Ko, (2) + k3, (2)))Cr, (2, 1)

We have also

Cy(z,t) + Cr(z,t) =0 (5.28)

and we consider at the beginning C'z; = 0 for ¢ = 0, which implies Cr = 0 for ¢ = 0. Then we have
Cp+Cr=0 for t=0=C44=0 for t=0
With the considerations made above, we obtain from (5.26), in the time ¢t = 0
0,Ca = V-((Day(x)=Da, (2))VCa, (x,0)) = ((ko, () + k1, () = (ko, (2) +F1, (2)))Ca, (,0) (5.29)
and for the equation (5.27), considering ¢ = 0 and C7,(0) =0

oCr = (klz (x) — kK, (x))CAz (.’E, 0) (530)
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From the equations (5.29) and (5.30) we have

H(Ca+C7)| =V -((Day(x) = Da,(2))VCa,(z,0)) (5.31)

t=0

and the equation (5.28) implies that

0 (Ca+C7) =0= V- ((Da, () = Da, (2))VCa,(x,0)) = 0 (5.32)

With appropriate initial value C4,(t = 0) = f(t = 0) it follows that D, (z) = Da,(z) (See
Proposition 5.2.7). Analogous situation can be extended to the three-component model ignoring

the portion that represents the transport.

5.4 Three-Component Reaction-Diffusion Model

Now we want to analyze the three-component model including the portion that represents the
transport and considering the parabolic differential equations that represent the radioactive con-
centration in artery, tissue and vein.

Let be C4, + Cr; + Cy, = f (measurement) and Cr; = Cy, =0 for t = 0. Let be now the system
0C 4,
ol

Q
ok,

ot

=V (D-/‘h (SU)VC_Al ({E,t) + Va, (x)CAm (xvt)) - (k01 (.’[) + kli(x))C-Az (xvt) + ks, (:L')CVz ({E,t) =0
=V (D7 (@) VCr a,£) 4 Vi (2o (1)) — (o, () + o, (2))Co () + o (2) o, (1) = O

=V (DV1 ('T)VC\% (iL',t) + VV«; ("I:>CV'L (!Eﬂf)) - (k(h ((,E) + k3i (x))CV1 ($7t) + kzi (x)CTl (‘T?t) =0
(5.33)

We take into account the following considerations for C 4, Cr and Cy:

C.A(xvt) = C.A1 (xvt) - C.Az(xvt)
CT(Iv ) =Cn (.Z‘,t) - Cﬁ(x’t)
OV($7t) = CV1 (xvt) - CV2(I,t)

~+

and for all others parameters:

k3(z) = ks, (z)
ko (x) = k2, (x)
ki(x) = ky, (@)
ko(x) = ko, (2)
Du(z) = Da,(z)
Dy (z) = D7, (2)
Dy(z) = Dy, (z)
Va(z) = Va, (2)
Vr(z) = V7 (2)
W(z) = W, ()
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Thus making the appropriate replacements, we have

9 Ca =V - (Da(z)VCa(z,t) + Va(@)Ca(w,t)) + ks(2)Cy(x,t) — (ko(x) + k1(2))Calz, t)
=-V: ((D.Az (l‘) — Dy, (m))VCAz (J?,t) + (V.Az (Z‘) —Va, (x))CAz (.L“,t)) + (k32 (J?) - k31 (x))cvz (.13, t)

= (koo (%) + k1, (x)) — (Ko, () + k1, (2)))Ca, (2, 1)
(5.34)

0O =V - (D7 (2)VCOr(2,t) + V7 (2)C7 (2, 1) + k1 (2)Ca(w, 1) — (ko(x) + ko (2)) O (2, 1)
= =V ((Dp(2) = D7 (2)VCOr, (2, 1) + (V1 (2) = V73 (2)) O, (2, 1)) + (K, () — K, (2))Ca, (2, 1)

— ((ko, () + k2, (2)) — (Ko, (2) + k2, (2)))C7; (2, 1)
(5.35)

0Cy = V- (Dy(2)VOy(z,t) + W(@)Cv(a, 1)) + ko (2)C7 (2, 1) — (ko(z) + ks(2))Cv(, 1)
= =V ((Dy, (2) = Dy, (2)) VO, (2,1) + (Vi (x) = W, (2)) O, (2, 1)) + (k2, (2) — k2, (2)) O3 (2, 1)

= (Ko, () + ks, (2)) — (ko, (z) + k3, (2))) Cy, (2, 1)
(5.36)

‘We have also

Ca(z,t) + Cr(x,t) + Cy(x,t) =0 (5.37)

and we consider at the beginning C'r; = Cy, = 0 for ¢ = 0, which implies C7 = Cy = 0 for ¢t = 0.
Then we have
Cp+Cr+Cy=0 for t=0=C4=0 for t=0

With the considerations made above, we obtain from (5.34), in the time ¢ =0

Ca ==V - ((Day(x) = Da, (2))VCa, (2,0) + (Via, (2) = Via, (2))Ca, (2, 0))

(5.38)
= (k1,(2) + k1, (2))Ca, (2, 0)

and for the equation (5.35), considering ¢ = 0 and C1;(0) =0
9 C1 = (k1,(2) — k1, (%)) Ca, (2, 0) (5.39)

and finally, for the equation (5.36), with ¢ = 0 and Cy,(0) =0
0:Cy =0 (5.40)

From the equations (5.38), (5.39) and (5.40) we have
O(Cat Cr+0Oy)| ==V ((Day (@) = Dy (2))VCa, (2,0) + (Viay (2) = Vi, (2))Ca, (2, 0))

(5.41)

and the equation (5.37) imply that
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Ca+Cr+Cy=0
= -V ((D.Az ('T) - D.A1 (.T))VCA2 (JJ,O) + (VAz (l‘) - VA1 ($))C_A2 (1‘,0)) =0

Assuming that V4 is known, one can identify D 4.

(5.42)



Numerical solution

This Chapter is intended to a numerical discussion on the problem presented in Chapter 3. First
we make a brief discussion involving the combination of the EM-algorithm and the parameter
identification problem in a single algorithm as a way to clarify how one solves the problem. In
Section 6.2 we discuss the discretization of the set of differential equations which describe the
problem in question. Therefore we present two methods that can be used to solve the optimization
problem (4.76), the Gradient-Method and Forward-Backward Splitting and the idea of solving our
problem numerically. Finally we want to discuss the process of convergence to the problem proposed

in this work.

6.1 EM - Algorithm and Parameter Identification Problem

In this section we explain how the problem is treated numerically. Here we work with the EM-
algorithm and the parameter identification problem together in each iteration, i.e., to solve the
problem of minimizing (4.76) we need to know the value of w,,, 1, s0 we need to calculate first the
k+ %—th step of the EM-algorithm:

ug f
= Uk g 1
Yty T el (Kuk> (6.1)

After solving the associated lagrangean functional we calculate all the parameters that composes
the vector py 1. Finally the value of G(pk+%) = upy1 is updated continuing the process and thus

allowing the calculation of the next EM-iteration. The procedure is described in the Figure 6.1.

6.2 Discretization of the Differential Equations

We want to discuss in this section the discretization of the differential equations which describe
the problem. For this, consider the following system, spatially dependent on x and y and temporal

dependent on t:
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Uk,

EM Uk+1

e

Figure 6.1: The EM - PI scheme [6]. The process starts in ug. Then, using the EM-step, Upy 1 s
estimated. Knowning u, , 1, we obtain the values of all biological parameters that compose p; +1
within the parameter identification process. Using the image sequence generation functional G, we
obtain ugy1 from those parameters. The next iterate for the EM algorithm is the image sequence
Ug+1, instead of Upy 1

pk—i—%

oC
5 = V((V(2)C) + (D(2)VC))
—diag(ko + k1) ks 0 (6.2)
+ 0 —diag(k;o + kig) ko C
kq 0 —diag(ko + k2)
Ca Da Va
Where C=| Cy |, D=| Dy |andV =] W,
Cr Dy Vr

We discretize the first time derivative with the operator splitting method using the notation C'(¢x) =
C7 (k). Then we obtain

" cr (/H%T)—CT(k) :a% (Dwaacxf (k+> V.o (k+>> (6.3)
(i) CT(“g);OT(“;’)%(Dyag (k+ )+VyCT <k+)> (6.4)

CT(k + 1) e (k + g) _diag(ko + kl) k3 0
- = 0 —~diag(ko + k3) ko O (k+ 1)
(i) k1 0 —diag(ko + k2)

(6.5)

The equations (6.3) and (6.4) can be discretized with the Scharfetter-Gummel Scheme [31]. We
treat both equations separately and it remains to discretize the spatial derivative. For the x-scale
we choose a grid G, = {z; = ih, — 1|i = 0,...,2N} with the step size at the x-scale h, and for
y-scale, respectively G, = {y; = jhy|j =0, ..., M} with the step size hy,.
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Consider now only the equation (6.3). Note that

Vot = 05(Va(@i,y;) + Va(zig1,95)), VW, = 0.5(VWa(wi,y;) + VWa(wit1,1;)) (6.6)
and

Vo = 05(Va(@i y;) + Valzior,ys), VW, = 0.5(VWa(zi,y;) + VW (2io1,35)) (6.7)

where VW, = D1V, (D << V). Making the discretization of the equation with respect to z,
assuming j = j and solving the equation with the implicit Euler method, we have (for details see
[31]).

o5 (k+3) ==Ly (63

with the matrix L, = (kf;), where we consider the following entries:

e For V, <0:
o V.F Vg exp (VW - ha) (6.9)
Y hyoexp (VW - ha) —he hx-exp (VWi - ha) — ha '
VvV
ki, = L 6.10
LT by exp (VWi - ha) — ha (6.10)
By, = —e o® (VI ho) (6.11)
" hx-exp(VWy - hx) — hz
e For V., > 0:
+ —. — —.
ke = V; . Vo exp( VW{ hz) (6.12)
' hy —exp (=VWg -hz) hx —exp(—VW, - hz)
v+
kX i, = £ 6.13
LT b, —exp (VWi - ha) (6.13)

. V. -exp (—VW{ - hx) (6.14)
hx —exp (=VW; - hz)

where V,, represents the velocity parameter in the x-direction (V4 in artery, V.7 in tissue and V.

in vein). Calculating this solution for all j = 1,..., M — 1, we can find the solution matrix

. 1 . 1 i 1 . 1

fori=1,...,2N —1and j=1,..., M — 1. For the initial data, we have

Coj=(Cl;(k)),, fori=1,....2N—1 (6.16)

1 _
We have then a solution CET <k + 3> for a fixed j.

Similarly, considering now the equation (6.4), we want to make the discretization with respect to
y. Note that

Vy+ = 05(Vy(x“yj) + Vy(xi7yj+1)), VW;_ = 05(VWy((E1, yj) + VWy(xi,yj + 1)) (617)
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and

Vi, =0.5(Vy(zi, y;) + Vy(@i,yj-1)), VW, = 05(VWy(zs,y;) + VWy(24,y;-1)) (6.18)

- 2
We assume now the other variable ¢ = ¢ as constant and compute a solution for t = k+ 3 Similarly

applying the implicit Euler method we have (see [31])
2 -1~ 7 1

with the matrix L, = (k};), where we consider the following entries:

e For V, <O:
% V. exp(VW, - h
oo v _ Yy en (VW - hy) (6.20)
1 hy -exp (VW - hy) —hy  hy-exp (VW - hy) — hy

v+
| — Y 6.21
gL hy - exp (VW, - hy) — hy ( )

V" -exp (VW - h
K1y =7 b — v (6.22)
7 hy-exp(VWy - hy) — hy
e For V,, > 0:
v V.o exp(=VW, -h
k=~ e~ - P(ZVIy - hy) (6.23)
' hy —exp (=VWy - hy)  hy —exp (=VW; - hy)

v+
| Y 6.24
ITLIT T hy, — exp (=YW, - hy) (6.24)

V.= exp(=VW_ - h
ki1, =2" bYW, - hw) (6.25)
Y hy —exp (=VWy - hy)
Note that the initial conditions in this case are

T T 1 s

Co}i—<Ci,j (k+3>> , forj=1,..., M -1 (6.26)
J
2 - -

We have then a solution C7 </<; + 3) for a fixed i. Calculating this solution foralli =1,...,2N —1

we can find the solution matrix

T 2 — T 2 T 2 T_ T g
C <k+ 3) ~ (e, (k+ 3) e Oy (k+ 3)) — 7, <k+ 3> (6.27)

fori=1,...,2N —1and j=1,..., M — 1. Applying both systems alternately leads to a solution
foralli=1,...,2N —1land j=1,...,M — 1 at any time ¢t. And the boundary values are given

with the boundary conditions, hence we have a solution for every i, j (for more details see [31]).

Finally the equation (6.5) can be easily solved with a few simple calculations. The discretization

of p, n and v was performed in the same way.
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6.3 Gradient Method
To solve numerically the equation (4.99) taking into account the conditions of optimalily (4.88) -
(4.94) and (4.100) - (4.108) we use the iterative gradient method.

This method is an algorithm widely used in the optimization problems to find a minimum (global

or local).

Let F be a multivariable function differential. The method then consists in finding a search direction

of a negative gradient of F' at x:

d=—-VF(z)) (6.28)
from a starting point.

Through the discretization of (6.28) by the forward-differences, we obtain the iterative system below

2" (z) = 2F — 7V (21)) (6.29)
considering 7 very small.

Following the same reasoning we obtain the following equations (6.30)-(6.43) which allow us to
calculate the desired parameters (considering the spatially dependence on z and y and the temporal

dependence on ¢, according to the examples presented in Chapter 7).

K (o) = k- 25 o) (6.30)
Ok1
K (2, y) = K — 7 25 o) (6.31)
Oko
K (2, y) = K — 7 25 ) (6.32)
Oks
X oL
Ver (@) = Vir =5 (0") (6.33)
oL
k+1 _ k k
Vo7 (z,y)=Vyr—7 Vo (»") (6.34)
oL
Vad ' (@,y) = Vil = 7 g (0") (6.35)
oL
k+1 _ k k
oL
Vzkujl(x» y) = kav - Tm(Pk) (6~37)
oL
k+1 _ k k
VyV ((E, y) - VvyV - Tavyv (p ) (638)
oL
Dk-‘rl — Dk‘ _ k .
oL
k+1 _ k k
Dyr (z,y) = Dyr — T Doy (p*) (6.40)
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Dt (w,y) = Dy - T%(pk) (6.41)
D5 (w) = Dha =755~ (0" (6.42)
Dt (a,y) = Dyy — 7 8(19?; (r") (6.43)
Dyt (w,y) = Dy — Ta?fyv(p’“) (6.44)

Having solved the equations above, we obtain the up of parameters that composes the vector
p. Since these values represent physiological parameters, we want to limit numerically computed
parameters to be physiological values, too. To obtain parameters ki, ks and k3 lying within a

physiological range [0, ], we use the projective gradient method:

1, if kF— Ta—'c(pk) > 1;
kk:+1 — S, if kk _ T*(pk) <G (645)
or ok
Kk — %(pk) else

for T reasonably small.

After we calculate the parameters that compose the vector p, we are able to upgrade the image

Uk+1 (I7 Y, t) via

uk+1(x7yvt) = G(p(I,y))
= G(kl(x,y),kg(x,y),kg(%y),DT(x,yLDA(x,y)7Dv(x,y),VT(x,y),VA(x,y),Vv(a:,y))

(6.46)
that will used in the next EM-iteration step to find u, 1 according to the following figure
pf = (M, K, o, DF, D%, DY, V4, V4, 3
) : 0L ., :. 0L, = O, & 0L i 06 , - 0L .. 0L . QL .. 0L, .:
0[: J - -~ J - = J o = J o i J - J - - J o - J o Sutre T J W T J
) = (G ) g ) G ) 50, =0 S ), ). ). ) )

Figure 6.2: The scheme in the PI process. The j-th iterate is used to compute the j + 1-th iterate
from p/ and OL. Processing iterates is stopped after m iterations until [p™ — p™~!| < e (e >0is a
specified factor ) is satisfied. This iteration is considered the optimal solution estimated p, fulfilling
O0L(p) = 0 and being denoted p; 1 building the base for the next EM-step.

Note that le represents both ij 4 and Vy];l (for the sake of simplicity) and the same also applies

to the diffusion and velocity parameters.
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Taking into account that the problem proposed here depends on various parameters that must

be adjusted numerically in each iteration and it is very time consuming, we use another method

that solves the minimization problem faster. This method, called Forward-Backward Splitting is

presented in the next section.

6.4 Forward-Backward Splitting

As seen in chapter 4, we will apply the Forward-Backward Splitting method for all parameters that

composes the vector p:

oG OH
k’f“(ﬂf,y) = kf - Tafkl(pk) - Tafkl(pkﬂ)

T T
B T (Qa(kE T — k) - 26ARTT) = kY -7 | - / Capdt + / Candt
0 0

T
(14 2a7)kM (2, ) — 207k — 267 ARM (2, ) = KX + T/CA(w,y,t)u(x,y,t)dt

0
T

- / C_A(.’L’, Y, t)n(xa Y, t)dt
0

kor1y = 2key + ka1,

b vt — 2+ ki
k+1 x,y+1 T, z,y—1
(14 2ar)ki™ (z,y) — 267 ( — 4+ 2z dyQy y )
T T
— kb (z,y) 47 / Coala g, Dyl g, £)dt — 7 / Coaler,y (., y, £)dt + 207k}
0 0

T
(14207 — 267B, — 267By )k (w,y) = ki (2,y) + 7 / Ca(z, y, t)u(z, y, t)dt

0
T

~ 7 [ Catoy (e . t)dt + 207k
0

And, finally

kit (z,y) = (1 + 207 — 267B, — 267B,) 7!
T T
iGww) + 7 [ Caloyutin(oy. e = 7 [ o,y (o, .t + 207k
0 0

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)
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In the language of numerical analysis,

T T
EF(x,y) + 7 / Calz,y, t)u(x,y, t)dt — / Ca(z,y, t)n(x, y,t)dt + 2a1k]
0 0

gives a forward step with step size 7 whereas (1 + 2a1 — 2£7B,, — 267B,) ™! gives a backward step.

Similarly, for ko and ks we have

kST (x,y) = (1+ 207 — 278, — 267B,) ™

T
(6.53)
K(a,y) — / Cr (e, gy, y)dt + 7 / Cor (e, ys D)1y, )t + 207k
0

kit (z,y) = (1 + 2a1 — 267B, — 267B,) ™"
T

k:’;(ﬂ?, Y, t) + T(.’E, Y, t) / Cv(l’, Y, t)n(xa Y, t)dt +7 / CV(:E> Y, t)PY(‘T7 Y, t)dt + 2@7‘]65;
0
(6.54)

And for the diffusion and velocity parameters we obtain

T
Vﬁ“(m, y)=(1—ar+£&rB, —l—fTBy)_l Vﬁ(m,y) — TV7]3(96, Y) - V/,u(a:,y,t)dt +arVi | (6.55)

0

Vit z,y) = 1—ar+&rBy+E6rBy) | Vi, y) — 7V (2, y,t) - V [ n(z,y, t)dt + a7V} | (6.56)

Ot~

T
V§+1(x,y) =(1—ar+£&7B, —|—§TBy)_1 V\’f(x,y) — TV‘f(:Ly) . V/W(x,y,t)dt +arVi; | (6.57)
0

DkT'H(:E,y) =(1+ar—&B, —§1B, )71

’ (6.58)
Dj (CCZ/)—TVDTIy/Vuxy, t)dt) + ar D}
0

DZJFI(.’E, y)=1+ar—E&rB, — fTBy)_1

A (6.59)
Di(m, y) — T(VD_’Z(LL’, Y) / Vn(z,y,t)dt) + arD%
0

DitY(z,y) = (1 + ar — 7B, — £7B,) ™}
T
Dly(z,y) — (VDY (x,y) / Vo, . t)dt) + ar D}
0

(6.60)

A good choice of 7 defines a significant speedup, because the dependence on the ill-posedness of the
operator K (the ill-conditioning of the matrix that represents the discretization of K) can make

the iterative scheme very slow.



Results

In this chapter we present some computed test results on synthetic and real data, performed with
MATLAB (The MathWorks™ | Inc., Natick, MA). We emphasize here that the purpose of this
chapter is to test both reconstruction of biological parameters involved as well as the behavior of
real H}?O-PET-scan data qualitatively.

7.1 A Synthetic Data Example

We present here a synthetic data example and we illustrate the reconstruction of parameters. For
this we use an image 79 x 159 pixels in domain 2. For the radioactive concentration C 4 in the

artery we use the initial function
Cala,y,0) =7(1 —2?)(N —y)y (7.1)

with N = 40, being represented by the following figure:

0 20 40 60 a0 100 1200 140 16D

Figure 7.1: The radioactive concentration C 4 in artery - t;

The radioactive concentration in the tissue and in vein at the beginning are zero and the time step

is 7 = 107°. The used method to solve numerically we use the Forward-Backward splitting (Section
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6.4). The table below show the biological parameters involved and the corresponding regularization
parameters (a-priori (o) and the gradient regularization (£)). The parameter (-)* is related to the

equation (4.95).

Parameter Initial Value ()* A-p. Regularization («) Gradient regularization (§)
k1 (1/cm) 0.9 0.89 0.01287520644013148965 0.0008
ko (1/cm) 0.75 0.7 0.012867926470118801553 0.0001
k3 (1/cm) 0.9 0.85 0.012876216264812848965 0.0001
V. . (em/s) 0.0001 0.1 0.001024495 0.0001
V, . (cm/s) 700 15 1.1000 0.0001
Vi (cm/s) -50 -5 1.122098745999 0.0001
V., (cm/s) 0.0001 0.1 0.001024495 0.0001
Vi, (cm/s) 0.0001 0.1 0.001024495 0.0001
Vi, (em/s) 700 15 1.1000000001 0.0001
D 4(cm?/s) 3%100-7) 103 0.0003344 0.000444
Dy (cm?/s) 3%100-9) 102 0.000344 0.000444
Dy (cm?/s) 3%1007 103 0.0003344 0.000444

Table 7.1: Input data for the synthetic example

The parameters ki, ko and k3 are constants (with a small variation) in all pixels of the image, and

their values of reconstruction are shown in the Table 7.2.

Parameter Reconstruction of the parameter
k1 0.826394154400616 +4 - 10710 (1/cm)
ko 0.688651340749675 +3 - 10~ (1/cm)
ks 0.826346689791371 +£3 - 10~11 (1/cm)

Table 7.2: Reconstruction of ki, ko and ks

The figures below show the exact reconstruction of all biological parameters. For all graphics below
the direction y ist represented by u. In order to better visualize the radioactive flow in the artery
and vein tissue the graphics have been plotted with the y axis on the horizontal, rotating the

coordinate system.

i :: H
A ; A
20 40 B0 80 100 120 140 0

0 20 40 60 a0 100 120 140 180 0 16

Figure 7.2: Reconstruction of V; , Figure 7.3: Reconstruction of V,, ,
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Figure 7.4: Reconstruction of V. Figure 7.5: Reconstruction of V.-
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20 40 =] a0 100 120 140

Figure 7.6: Reconstruction of V;,, Figure 7.7: Reconstruction of V,,,

| e—

0 20 40 B0 a0 100 1200 140 160

Figure 7.8: Reconstruction of D, , Figure 7.9: Reconstruction of D,



7 Results 82

Figure 7.10: Reconstruction of D,,,

The Figure 7.11 describes the behavior of blood flow that we want to reproduce i.e., the exchange
of materials between artery, tissue and vein. It starts in the left ventricle of the heart, which it
contracts and pumps blood to the largest artery in the body, the aorta. This blood passes through
a network of small blood vessels called capillaries. The capillaries converge to small veins (venules)

that will gradually uniting with each other, become veins and carry blood back to the heart.

Figure 7.11: Exchange of materials. © 2007 Alexandre Wahl Hennigen

Based on this we present here the reconstructions that represent the radioactive concentrations in

artery, tissue and vein for different times.
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Figure 7.12: Reconstruction of C 4 — to Figure 7.13: Reconstruction of C' 4 — t3
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Figure 7.14: Reconstruction of C' 4 — tg Figure 7.15: Reconstruction of C 4 — tg
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Figure 7.16: Reconstruction of C 4 — t12 Figure 7.17: Reconstruction of C' 4 — t15

o 20 40 B0 80 oo 120 140 160 o 20 40 60 a0 100 120 140 160

Figure 7.18: Reconstruction of C 4 — t1g Figure 7.19: Reconstruction of C' 4 — t9;
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o 20 40 60 a0 100 120 140 160 o 20 40 B0 80 oo 120 140 160

Figure 7.20: Reconstruction of C'y — tg Figure 7.21: Reconstruction of C'y — tg

o 20 40 60 a0 100 120 140 160 o 20 40 B0 80 oo 120 140 160

Figure 7.22: Reconstruction of C'y — t15 Figure 7.23: Reconstruction of C'y — t15

o 20 40 60 a0 100 120 140 160 o 20 40 B0 80 oo 120 140 160

Figure 7.24: Reconstruction of C'y — t15 Figure 7.25: Reconstruction of C'y — to;
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o 20 40 B0 80 oo 120 140 160 u] 20 40 B0 a0 1m0 120 140 160

Figure 7.26: Reconstruction of Cy — t3 Figure 7.27: Reconstruction of Cy, — tg
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Figure 7.28: Reconstruction of Cy — tg Figure 7.29: Reconstruction of Cy — t1o
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Figure 7.30: Reconstruction of Cy — t15 Figure 7.31: Reconstruction of Cy — t1g
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Figure 7.32: Reconstruction of Cy, — to;

7.2 Parameter Identification on Exact Data - Error Analysis

For this section we performed a simple test using a matrix that represents the real PET-data
(Figure 7.33) and generates an image 65 x 65 pixels. The objective of this test is purely evaluate
the error scale in the reconstruction of physiological parameters involved. The used method to solve
numerically we use the Forward-Backward splitting (Section 6.4). with 7 = 10~%. The initial values
and the respective regularization parameters are shown in Table 7.3. The reconstructed parameters

are evaluated based on real parameters taken from [69, 105].

Note that the margin of error is small, considering the fact that we are working with a ill-posed

problem. The error is evaluated based on

1/ = Fllo
£ lloo

where f denotes the exact parameter and f denotes the parameter reconstruction, being || ||o the

suprem-norm. Thus we obtain the following error values:

k - k rec k — k rec
[1F1 = Frrecll Lo = 0.013177662377619, k2 = 2 recll Lo = 0.022069154633864

k1]l

s = Fs.reellLee _ ) 017062700703776

ILZ
HVyA - VyA,v"eCHLoo

= 0.042364570350000
| |VyA | |Loo

Vor = VT recllio.

=0.10705351
VTl

[[Vyv — Vyvreel Lo

Vol = 0.042164507035
yVII Lo

||DT - DT,recHLm

= 0.441155366666667
DTl

| ‘Vz.A - Vm.A,rec| IL(X,

|[k2lL..

= (.107200000000000

Veallra

||VacT - VxT,TecHLoo

= 0.099845032204912
| |VIT| |L(x>

||V1V - VmV,recHLOC = 0.107253510

||D.A - D.A,recHLoo

Vev!|o

= 0.442795670666667

1Dallz.

||DV - DV,’I’ECHLOQ
[1DvlLa

= 0.442829583333333

with k1 rec, k2,rec, k3 rec, €tc. denoting the computed reconstructions.
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7.3 Parameter Identification for Real PET-System

We present now an example in order to analyze the reconstruction of the parameters for a specific
case. Thus, we use an operator K (16512 x 4225) associated with the PET-real image given by the

following figure:

40.014

40.012

40.01

40.008

Figure 7.33: Synthetic image. Forward operator K from real PET scanner

By a given K we are able to produce an image that represents the behavior of real H3O-PET-scan

data. For this case we use an image 65 x 65 pixels, in domain €.

For the radioactive concentration C 4 in the artery we use the initial function given by the equation
(7.1) with N = 50 and the time step 7 = 3 - 107°. The radioactive concentration in artery at the
beginning can be visualized by the Figure 7.34.

10.016

q0.014

q0.012

10.008

Figure 7.34: The radioactive concentration C4 in artery - ¢;

As in the previous example, the radioactive concentration in the tissue and in vein at the beginning
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are zero and the used method to solve numerically we use the Forward-Backward splitting (Section

6.4). All the biological parameters involved are given by the following table.

Parameter Initial Value ()* A-p. Regularization (o) Gradient regularization (&)
k1 (x)(1/cm) 0.9 (0) 0.89 0.017148965 0.0008
ko (%) (1/cm) 0.75 (0) 0.7 0.015801553 0.0001
ks(1/cm) 0.9 0.85 0.01648965 0.0001
Vi (em/s) 0.0001 0.1 0.001024495 0.0001
V,, . (cm/s) 700 15 1.1000 0.0001
Ve, (em/s) -50 -5 1.122098745999 0.0001
V., (em/s) 0.0001 0.1 0.001024495 0.0001
Vo, (cm/s) 0.0001 0.1 0.001024495 0.0001
Vy, (cm/s) 700 15 1.1000000001 0.0001
D a(em?/s) 3%1007 103 0.0003344 0.000444
D7(ecm?/s) 3%100-9) 102 0.000344 0.000444
Dy,(cm?/s) 3%1007 103 0.0003344 0.000444

Table 7.3: Input data for a first real example

Here we also evaluate the behavior of radioactive flow when some interval of ki e kg is equal to
zero and therefore, in the above table, the symbol (x) refers to the fact that k; and ko are not
considered constant across the region of interest. When k1 = ko = 0 there is no exchange of
materials from the artery to the tissue and from the tissue to the vein, and this means that the

radioactive concentration (in this region) in the tissue and in the vein are zero.

The reconstruction of k3 are always constant (therefore the figure is omitted) with value 0.80611044044+
4-107%/em. The following figures refer to the reconstruction of biological parameters for real PET-
data:

Figure 7.36: Reconstruction of ks

Figure 7.35: Reconstruction of kq
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Figure 7.37: Reconstruction of V,, ,
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Figure 7.39: Reconstruction of V-
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Figure 7.41: Reconstruction of V,,
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Figure 7.40: Reconstruction of V,,-
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Figure 7.42: Reconstruction of V,,
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Figure 7.43: Reconstruction of D,
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x10°
3352
3352
3.3519
3.3519
33518
3.3518
33517
133517
3.3516
3.3516
3.3515

We want to introduce now, for the same example above, the reconstruction of some of these param-

eters (but with different regularization parameters) with u degraded by Poisson distributed noise
in that f is calculated by f = v(Ku 4+ n), for different values of :

k.
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Figure 7.46: The figures above represent the reconstruction of k; for noise-free case (left) and k;

degraded by Poisson noise with v = 5 (middle) and = 10 (right), with n = 0.0055.
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Figure 7.47: The figures above represent the reconstruction of ks for noise-free case (left) and ko
degraded by Poisson noise with v = 5 (middle) and v = 10 (right), with n = 0.0055.

Figure 7.48: The figures above represent the reconstruction of V,,, degraded by Poisson noise with
v =1 (left), v = 5 (middle) and v = 10 (right), with n = 0.0055.

Figure 7.49: The figures above represent the reconstruction of V,,. degraded by Poisson noise with
v =1 (left), v = 5 (middle) and v = 10 (right), with n = 0.0055.

Figure 7.50: The figures above represent the reconstruction of Vj,,, degraded by Poisson noise with
v =1 (left), v =5 (middle) and v = 10 (right), with n = 0.0055.
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Figure 7.51: The figures above represent the reconstruction of D 4 degraded by Poisson noise with
v =1 (left), vy =5 (middle) and v = 10 (right), with n = 0.0055.
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Figure 7.52: The figures above represent the reconstruction of Dy degraded by Poisson noise with
v =1 (left), v =5 (middle) and v = 10 (right), with n = 0.0055.

Finally, we present here the reconstructions that represent the radioactive concentrations in artery,

tissue and vein for the example presented in beginning of this section, for different times:

Gty
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B0 -
50
0.014
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0.012
0 0.01
il -
10 -
0
0 0 20 3| 40 s ED

Figure 7.53: Reconstruction of C 4 — t3 Figure 7.54: Reconstruction of C' 4 — tg
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Figure 7.55: Reconstruction of C' 4 — tg Figure 7.56: Reconstruction of C' 4 — t1
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Figure 7.57: Reconstruction of C 4 — t15 Figure 7.58: Reconstruction of C' 4 — t13g
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Figure 7.59: Reconstruction of Cy4 — to; Figure 7.60: Reconstruction of C'y — t3
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Figure 7.61: Reconstruction of C'y — tg

w10’

Figure 7.63: Reconstruction of C'y — t15

Figure 7.65: Reconstruction of C'y — t15

Figure 7.62: Reconstruction of C'y — tg

Figure 7.64: Reconstruction of C'y — t15

%107

Figure 7.66: Reconstruction of C'y — to;
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Figure 7.69: Reconstruction of Cy — tg
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Figure 7.67: Reconstruction of Cy — t3
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Figure 7.71: Reconstruction of Cy — t15

Figure 7.68: Reconstruction of Cy, — tg

Figure 7.70: Reconstruction of Cy — t1o

Figure 7.72: Reconstruction of Cy — t1g
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Figure 7.73: Reconstruction of Cy — to;

Thus we are able to produce the graphics for u = C 4 + Cy + Cy, as follows:
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20

u-ty

r.u

10 20 30 40 50

Figure 7.74: Reconstruction of u — t3 Figure 7.75: Reconstruction of u — tg

Figure 7.76: Reconstruction of u — tg Figure 7.77: Reconstruction of u — t15
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Figure 7.78: Reconstruction of u — t15 Figure 7.79: Reconstruction of u — t1g
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Figure 7.80: Reconstruction of u — t9;

Note that as the operator K has values equal to zero (outside the circle bounded by K), exactly in

this region we can not reconstruct the image u, therefore u equals zero.

7.3.1 Second Example of Parameter Identification on Real PET-System

As a third and final example of this work, we will use again the operator K that represents the real
PET-matrix presented above, but with the aim of analyzing a new case considering different input

values for k1, ko and k3. The input values can be visualized in the Table 7.4.

For the radioactive concentration C 4 in the artery we use the initial function given by the equation
(7.1), with N = 50 and the time step 7 = 3 - 107> in domain Q. The used method to solve
numerically we use the Forward-Backward splitting (Section 6.4). The radioactive concentration in
artery at the beginning can be visualized by the Figure 7.34. The reconstruction of k3 are always
constant (therefore the figure is omitted) with value 0.010686812999361 & 4 - 10781 /cm.

0.015

0.005

=}
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Parameter Initial Value ()* A-p. Regularization (o) Gradient regularization (§)

k1(*)(1/cm) 0.9 (0) 0.89 0.017148965 0.0008

ka(x)(1/cm) 0.75 (0) 0.7 0.016801553 0.0001
k3(1/cm) 0.01 0.85 0.051822197678965 0.0001

Vo u(em/s) 0.0001 0.1 0.001024495 0.0001
Vyulem/s) 700 15 1.1000 0.0001
Var(em/s) -50 -5 1.122098745999 0.0001
Vyr(em/s) 0.0001 0.1 0.001024495 0.0001

Vi, (em/s) 0.0001 0.1 0.001024495 0.0001

Vi (em/s) 700 15 1.1000000001 0.0001

D a(cm?/s) 3%1007 10(=3) 0.0003344 0.000444

D1 (cm?/s) 3%10-9) 102 0.000344 0.000444

Dy (cm?/s) 3%100-7) 10(=3) 0.0003344 0.000444

Table 7.4: Input data

The following figures refer to the reconstruction of biological parameters for real PET-data:
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Figure 7.81: Reconstruction of ky
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Figure 7.83: Reconstruction of V, ,
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Figure 7.82: Reconstruction of ko
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Figure 7.84: Reconstruction of V,, ,
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And the radioactive concentrations in tissue, vein and u:

Figure 7.89: Reconstruction of D, ,

Figure 7.90: Reconstruction of D,
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Figure 7.91: Reconstruction of C'r — t3 Figure 7.92: Reconstruction of C'r — g

Figure 7.93: Reconstruction of C'y — tg Figure 7.94: Reconstruction of C'y — t12
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Figure 7.95: Reconstruction of Cy — t3 Figure 7.96: Reconstruction of Cy — tg
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Figure 7.99: Reconstruction of Cy — t15
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Figure 7.98: Reconstruction of Cy, — 12
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Figure 7.100: Reconstruction of u — to
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Figure 7.102: Reconstruction of u — t1g

As we can see, the fact that k; and ko are equal to zero exactly in the center is reflected in the

graphics that represent the radioactive concentrations in tissue and vein, which remains zero in the

same place.
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